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Supplementary Materials: 

(Don’t) try this at home! The effects of recording devices and software on 

phonetic analysis 

CHELSEA SANKER, SARAH BABINSKI, ROSLYN BURNS, MARISHA EVANS, JEREMY JOHNS, JUHYAE

KIM, SLATER SMITH, NATALIE WEBER, CLAIRE BOWERN 

The supplementary materials presented here contain further information about the statistical 
models used to test each effect and further discussion of the results for individual measurements, 
including effects which did not reach significance. See Section 3 in the main text for an overview 
of the results. Some of the points that are included in the main text are also presented in the 
supplementary materials, in order to provide a complete presentation of the results here. 

1. FURTHER INFORMATION ABOUT RECORDING DEVICES AND SOFTWARE

Table S1 below provides further information about the devices used in Phase 1 of recording. 
The numbers refer to the photograph of the setup in Figure 2 of the main text. For clarity, as in 
the main text, the Zoom H4n recorder will be referred to as H4n. 

Number Device Specifications Output 

1 Zoom H4n uncompressed, 44,100 Hz sampling rate, internal microphone; recorder 
is approximately 3 years old 

wav 

2 iPad 8th generation, iOS 14, on airplane mode, using VoiceMemos, internal 
microphone, ‘compressed’ setting 

m4a 

3 Macbook 
Pro 

running OS 10.15 (Catalina), using internal microphone recording to 
Audacity, running PsychoPy to present the stimuli 

wav 

4 Macbook 
Pro 

running OS 10.15 (Catalina), using external microphone recording to 
Audacity, recording with mid 2015 Audio Technica headset 
microphone using iXr external sound card 

wav 

5 Android 
phone 

model LM-X320TA, running Android version 9, recording with the 
built-in application Audio Recorder (the settings do not give options for 
compression) 

m4a 

6 iPhone iPhone 6s, iOS 14, recording with internal microphone using 
VoiceMemos, uncompressed format 

m4a 

TABLE S1. Specifications for recording devices used. 

Supplementary materials for ‘(Don’t) try this at home! The effects of recording devices and  
software on phonetic analysis’, by Chelsea Sanker, Sarah Babinski, Roslyn Burns, Marisha 

Evans, Jeremy Johns, Juhyae Kim, Slater Smith, Natalie Weber, and Claire Bowern.  
Language 97(4).e360–e382, 2021.
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For the software conditions (Phase 2 of the recording), we chose to test software that, we 

believe, is commonly being used in remote field recordings. The software tested included Zoom, 
Skype, Facebook Messenger (recorded through Audacity, because it does not have an in-app 
recording option), the web-based podcast program Cleanfeed, and Audacity (without any virtual 
transmission, to distinguish between effects of Messenger and effects of Audacity). We chose 
only free recording programs. Since the settings of some of these software programs can vary 
substantially, we specify our recording setup below. All settings and program versions were up 
to date as of November 2020. 
 

● Zoom (v 5.3.1): We tested three configurations: remote recording versus locally 
recorded; in the remote condition, compressed versus ‘original sound’1 (without echo 
cancellation); and extracted from video versus audio only. The two remote recordings 
were done on a Mac and a Windows PC, with the former being set to ‘original sound’ and 
the latter recording with the default, compressed settings. The local recording was also 
done on a Mac. Files were output as wav (audio only) or mp4 (audio and video) 

● Skype: We recorded the call using Skype’s built-in recording feature that captures audio 
and video. The local recording was done on a Mac running 10.14, and the remote 
recording on a PC with Windows 10 (Skype v 8.65.0.78.). Files were saved as mp4. 

● Messenger/Audacity: Facebook Messenger is a widely used application for linguistic 
fieldwork. Although there is no built-in recording system, we used Audacity (version 
2.4.2) running in the background of the remote recorder’s PC to record the call's audio. 
Audacity is widely used by fieldworkers as a way to record audio directly from a 
computer sound card (e.g. Mihas 2012, Johnson et al. 2018, Purnell et al. 2013). Files 
were saved in Audacity as uncompressed 16bit wav. To distinguish between effects of 
Messenger and effects of Audacity, a second condition used Audacity alone; as in the 
other condition, the sound card was treated as audio input to the Audacity program. 

● CleanFeed: This is an online platform (https://cleanfeed.net/) that allows the user who 
initiates the call to manage the settings and make audio recordings. In our case, the 
‘remote’ recorder (in the role of fieldworker) initiated and recorded the call, and this was 
done on a PC running Windows 10. Cleanfeed also has options of muting speakers and 
selecting which channel to record. Our settings were such that the remote recorder was 
muted and only the audio stream playing the stimuli was recorded. Files are saved as 
wav. 

 
The recordings from CleanFeed and Messenger (through Audacity) did not include videos. 

Software such as Zoom and Skype provide the option to extract audio tracks, but given that a) 
the quality of the audio file is not altered by the presence or absence of video and b) remote 
fieldworkers may find videos useful to see certain articulatory features (such as rounding), 
facilitate general communication with the linguistic consultant, or for sign language research, we 
included video recording where possible. However, we did not further analyze the video 
recordings except to extract the audio signal. Similar issues raised in this paper for audio 

 
1 According to Zoom’s settings, the ‘original sound’ option ‘disables noise suppression, removes high pass filtering, 
and automatic gain control.’ 
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fieldwork probably also apply to fieldwork with sign languages, particularly the horizontal 
compression identified in Section 2.5 below. See Lucas et al. 2013 for further discussions of sign 
language fieldwork, and Hou et al. 2020 on strategies for web-based sign language data 
collection and annotation. 

Since consultants may use their phones during remote elicitation sessions, we also considered 
the inclusion of phone apps in our remote recording conditions (that is, where the audio signal is 
played through the cellphone or tablet and recorded remotely). However, logistical issues with 
recording and the already ballooning number of testing configurations led us to exclude this 
condition from Phase 2. For example, Facebook Messenger’s mobile app also does not seem to 
allow recording apps to run in the background and record the call. Some other apps on iOS 
devices are allowed to run in the background while recording, but they use the Voice Memos 
app, which was already tested in our ‘device’ condition in Phase 1. Most crucially, our method of 
treating the H4n as external input and using it to play our recordings was unreliable on phones 
and tablets, where the external source did not reliably select the device as the microphone input. 
An external sound card would have perhaps allowed this, at the expense of testing the device 
audio itself. 

Some additional comments about the file processing pipeline are in order. As briefly 
discussed in the main text, we converted all files to wav format and downsampled them to 16kHz 
for processing with the p2fa forced alignment algorithm. The effects of downsampling on digital 
audio files are well-known (cf. Johnson 2012). The only measurement for which downsampling 
is likely to affect our measurements is COG (center of gravity, a measurement used to 
characterize fricatives). We did find measurement differences in COG, but note that they are not 
due to the downsampling method; we would probably find even larger differences if we 
compared the non-downsampled recordings, due to their different sampling rates. Note that our 
aim in this experiment is not to compare recorded speech to live speech; rather, we are primarily 
comparing different forms of recorded speech to one another. Therefore, while for a research 
project where the aim is to represent speech as accurately as possible, we would probably use a 
higher sampling rate (as permitted by the recording device) and not downsample, in our case, we 
wish to treat the sound files as similarly to one another as possible, to be sure that any 
differences we see are due to the type of recording. 
  

2. RESULTS 

2.1. EFFECTS OF DEVICE. Here we present the full results for the effect of each device on the 
acoustic measurements. All statistical results are from mixed effects models calculated with the 
lme4 package in R (Bates et al. 2015). The p-values were calculated by the lmerTest package 
(Kuznetsova et al. 2015). The reference condition, which the other conditions were compared 
against, was always the H4n recorder. Because of a technical issue, one of the recordings for one 
of the speakers was lost, so the analyses of effects by device only include two speakers instead of 
three.  
 

OVERALL DEVICE EFFECTS. This section presents results for the main measurements of each 
phonetic characteristic by device; the following section will examine interactions between device 
and phonological predictors. 

Table S2 presents the summary of a linear mixed effects model for consonant duration (in 
ms) as predicted by the device. There was a random intercept for speaker.  
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Several of the conditions found significantly different consonant duration than the baseline 
H4n recorder, as is discussed in the main text. Possible sources of these differences in measured 
duration are discussed below. 
 
      Estimate  SE t-value p  

(Intercept)    116.6 2.5 45.8  < 0.001 

Device Android    -2.8 3.6 -0.79 0.43 

Device ExternalComputerMic  4.7 3.6 1.3 0.19 

Device InternalComputerMic   -9.6 3.6 -2.7 0.008 

Device iPad  -9.0 3.6 -2.5 0.012 

Device iPhone -4.9 3.6 -1.4 0.18 

TABLE S2. Linear mixed-effects model for consonant duration (in milliseconds). Reference 

level Program = H4n. 
 

Table S3 presents the summary of a linear mixed effects model for vowel duration (in ms) as 
predicted by the device. There was a random intercept for speaker.  

Vowels were significantly longer than the baseline standard in the iPad condition. The 
differences in consonant duration seen above appear to be largely offset by the differences in 
vowel duration. That is, those conditions where the vowels are shorter are the same ones where 
the consonants are longer. Note, however, that the magnitude of the effects is overall quite small; 
less than 10 ms for most cases (which is the level of resolution of the forced aligner). 
 

      Estimate  SE t-value p  

(Intercept)    164.3 12.8 12.9 0.025 

Device Android    4.3 7.0 0.61 0.54 

Device ExternalComputerMic  -4.9 7.0 -0.7 0.48 

Device InternalComputerMic   8.6 7.0 1.2 0.24 

Device iPad  15.5 7.0 2.2 0.027 

Device iPhone 6.1 7.0 0.87 0.39 

TABLE S3. Linear mixed-effects model for vowel duration (in milliseconds). Reference level 

Program = H4n. 
 

As noted in the main text and repeated here, there are two possible (not mutually exclusive) 
causes of segment differences. One is differences in boundary identification. In this case, 
properties of the digitization affect the performance of the forced aligner, such that segment 
boundaries are placed in different positions. A second source of difference is variation in the 
timing of segments which is introduced by compression. In this case, the segments do actually 
have different durations in the recording file (though not, of course, in the original speech). To 
illustrate the problem, consider the sets of alignments in Figure S1. The figure shows the 
spectrogram and two sets of alignments. The file is CS’s speech recorded by Skype. The upper 
tier is the alignment as run on the actual file. The bottom tier is the alignment as run on the ‘gold 
standard’ recording. They begin close to identical (compare differences for the first phrase ‘we 
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say latch again’), as this is the first utterance in the recording. However, the second phrase (‘we 
say sheep again’) shows a fairly consistent offset, starting from ‘we’, and the utterance clearly 
begins before the given boundary. This is most readily explained by compression affecting the 
length of the silence in the pause (marked by ‘sp’). 

 

 
FIGURE S1. Comparison of word-level alignments from the Skype condition (top tier) and the 

gold standard H4n (bottom tier) for speaker CS. Audio from the Skype condition (= Figure 3 of 
main text). 

 
It is likely that differences in measured duration by device mostly reflect differences in 

boundary identification rather than alterations to the actual timing of segments. However, as we 
discuss below in Section 2.5, the timing is directly influenced in some conditions, particularly in 
comparisons across programs. A lower signal-to-noise ratio makes boundaries more difficult to 
identify. This issue is not specific to the forced aligner. Humans also depend on segmentation 
cues that are obscured by low intensity or high background noise; indeed, automatic 
segmentation in such cases is likely to be preferable for comparisons, because segmentation 
biases will be consistent, while manual segmentation is likely to be more variable.  

Figure S2 illustrates an item for which segmentation is notably different in different 
conditions, tug as produced by speaker CS. The final consonant /g/ has formant structure due to 
incomplete closure, which seems to result in it being segmented differently in the two conditions. 
In the baseline condition, the drop in intensity and lack of clear higher formants results in a 
relatively early boundary between the vowel and the final consonant. In the iPad condition, the 
divide is not so sharp, due to background noise, and the boundary between the vowel and final 
consonant is put much later. Note that in both recordings, the clear boundary between the initial 
consonant and the vowel is identified nearly identically. 
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FIGURE S2. The word tug as produced by speaker CS and recorded by the H4n recorder (left) 

and iPad (right) (= Figure 4 of main text). 
 
Table S4 presents the summary of a linear mixed effects model for mean f0 (in Hz) in vowels 

as predicted by the device. There was a random intercept for speaker.  
There were no significant effects of Device on mean f0, though f0 was marginally lower in 

the iPad and iPhone conditions. In a larger dataset, the effect might reach significance. However, 
it is worth noting that the differences in measured f0 are small relative to the expected size of 
phonological f0 patterns. 
 

      Estimate  SE t-value p  

(Intercept)    180.4 5.1 35.1 0.011 

Device Android    1.0 2.2 0.47 0.63 

Device ExternalComputerMic  0.98 2.2 0.45 0.65 

Device InternalComputerMic   -0.98 2.2 -0.45 0.65 

Device iPad  -3.3 2.2 -1.5 0.13 

Device iPhone -3.6 2.2 -1.7 0.098 

TABLE S4. Linear mixed-effects model for mean f0 (in Hz) in vowels. Reference level 

Program = H4n. 

 
Figure S3 presents the distribution of f0 measurements for each speaker in each condition. 

Given the similar distributions across conditions, the different results are unlikely to be the result 
of pitch tracking errors; effects are not driven by a small number of major measurement 
differences. None of the conditions excluded more than 5 tokens as unmeasurable, so the results 
are also not the result of different exclusions. The differences might be related to the differing 
boundary assignments in each condition, as also reflected in the duration differences. Different 
boundaries could reduce extrinsic f0 effects of voicing of the neighboring consonants.  
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FIGURE S3. Density plots for the mean f0. 
 
Table S5 presents the summary of a linear mixed-effects model for peak timing (in ms) -- the 

position of the maximum f0 relative to the beginning of the vowel, as predicted by the recording 
program. There was a random intercept for speaker. 

There were no significant effects of Device on peak timing, but there were suggestive trends 
for Android and ExternalComputerMic which could be expected as a side effect of differences in 
vowel duration, because when the beginning of the vowel is put earlier, then the peak occurs 
later relative to that boundary. The size of the differences is small, though the differences are 
large enough relative to the size of actual peak timing effects that they could alter results. Many 
of the differences are due to how many items identify the peak f0 as occurring at the beginning 
of the vowel, which could be a result of the differences in the boundary identified for the 
beginning of the vowel. 
 

      Estimate  SE t-value p  

(Intercept)    27.5 3.2 8.6  < 0.001 

Device Android    6.6 4.5 1.5 0.15 

Device ExternalComputerMic  7.4 4.5 1.6 0.1 

Device InternalComputerMic   -2.9 4.5 -0.64 0.53 

Device iPad  -0.6 4.5 -0.13 0.9 

Device iPhone -4.4 4.5 -0.98 0.33 

TABLE S5. Linear mixed-effects model for f0 peak timing (in milliseconds). Reference level 

Program = H4n. 
 
Table S6 presents the summary of a linear mixed-effects model for jitter in vowels as 

predicted by the device, i.e. the cycle-to-cycle variation in f0. There was a random intercept for 
speaker.  

There were no significant effects of Device on jitter measurements, which is consistent with 
the generally reliable f0 measurements. 
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      Estimate  SE t-value p  

(Intercept)    0.021 0.0017 12.3 0.0025 

Device Android    0.00031 0.0016 0.19 0.85 

Device ExternalComputerMic  -0.0012 0.0016 -0.72 0.47 

Device InternalComputerMic   -0.0009 0.0016 -0.56 0.58 

Device iPad  0.0022 0.0016 1.3 0.18 

Device iPhone 0.0019 0.0016 1.2 0.24 

TABLE S6. Linear mixed-effects model for jitter in vowels. Reference level Program = H4n. 
 
Table S7 presents the summary of a linear mixed-effects model for spectral tilt (H1-H2) in 

vowels as predicted by the device. There was a random intercept for speaker.  
Spectral tilt was significantly lower in the Android condition than in the baseline H4n 

condition, and marginally higher in the iPhone condition. Even the differences that were not 
significant are rather large relative to the size of meaningful spectral tilt differences. The 
differences might indicate variation in how well the devices record higher and lower frequencies. 
The differences do not seem to be the result of distance from the speaker; the phones and the 
baseline H4n device were similarly close to the speaker, and the phones have opposite effects. 
(See Figure 2 in the main paper for a photograph that shows the physical arrangement of the 
recording devices.) 

  
      Estimate  SE t-value p  

(Intercept)    -2.0 2.0 -1.0 0.48 

Device Android    -1.5 0.59 -2.5 0.013 

Device ExternalComputerMic  -0.93 0.59 -1.6 0.11 

Device InternalComputerMic   -0.57 0.59 -0.97 0.33 

Device iPad  0.41 0.59 0.69 0.49 

Device iPhone 1.0 0.59 1.7 0.084 

TABLE S7. Linear mixed-effects model for spectral tilt in vowels. Reference level Program = 

H4n. 
 
Table S8 presents the summary of a linear mixed-effects model for Harmonics-to-Noise 

Ratio (HNR) in vowels as predicted by the device. There was a random intercept for speaker.  
HNR was significantly lower in the InternalComputerMic condition than in the baseline H4n 

condition, indicating more noise relative to the periodic components of the vowel in this 
condition than the baseline condition. This might reflect differences in sensitivity of the device’s 
microphone to the periodic frequencies present in the signal. However, this result might also be 
due to distance from the speaker; this microphone was the furthest from the speaker. 
Impressionistically, internal computer microphones also pick up more noise from computer fans. 
See Section 2.4 below for measurements of signal-to-noise ratio. 
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      Estimate  SE t-value p  

(Intercept)    6.4 1.3 4.9 0.12 

Device Android    0.59 0.37 1.6 0.11 

Device ExternalComputerMic  0.039 0.37 0.11 0.92 

Device InternalComputerMic   -1.5 0.37 -4.2 <0.001 

Device iPad  -0.34 0.37 -0.92 0.36 

Device iPhone -0.23 0.37 -0.63 0.53 

TABLE S8. Linear mixed-effects model for HNR in vowels. Reference level Program = H4n. 
 
Table S9 presents the summary of a linear mixed-effects model for F1 in vowels as predicted 

by the device. There was a random intercept for speaker and for vowel. All formant analyses 
used the measurements in Hertz. Lobanov normalization did not substantially change the results, 
so those analyses are not included here. 

F1 was significantly lower in the InternalComputerMic, iPad, and iPhone conditions than in 
the baseline H4n condition. These results might be related to the trends found in spectral tilt 
measurements. As has been demonstrated previously, formant measurements are influenced by 
how the formants align with the harmonics (Chen et al. 2019). The effects of device on formant 
measurements vary by vowel; it is important to keep in mind that a lack of consistent overall 
effect across vowels does not mean that a device condition had no impact on formant 
measurements. Differences in how the formant measurements for each vowel are impacted by 
device are presented at the end of this section. 
 

      Estimate  SE t-value p  

(Intercept)    613.5 55.1 11.1 < 0.001 

Device Android    -7.3 7.5 -0.98 0.33 

Device ExternalComputerMic  -8.7 7.5 -1.2 0.24 

Device InternalComputerMic   -19.8 7.5 -2.7 0.008 

Device iPad  -15.2 7.5 -2.0 0.042 

Device iPhone -25.7 7.5 -3.4 < 0.001 

TABLE S9. Linear mixed-effects model for F1 in vowels. Reference level Program = H4n. 
 
Table S10 presents the summary of a linear mixed-effects model for F2 in vowels as 

predicted by the device. There was a random intercept for speaker and for vowel. 
F2 was significantly lower than the baseline measurement in the InternalComputerMic 

condition, and significantly higher in the iPad and iPhone conditions. The results vary 
substantially for different vowels, as is presented at the end of this section. One of the major 
effects seems to be attributable to diphthongization of high and mid-high tense vowels, so failure 
to capture the full trajectory of the formants within the vowel results in altered estimation of the 
mean F2. 
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      Estimate  SE t-value p  

(Intercept)    1897.5 115.7 16.4 < 0.001 

Device Android    56.8 25.7 2.2 0.027 

Device ExternalComputerMic  -33.5 25.7 -1.3 0.19 

Device InternalComputerMic   -77.4 25.7 -3.0 0.0026 

Device iPad  145.0 25.7 5.7 < 0.001 

Device iPhone 70.6 25.7 2.7 0.0061 

TABLE S10. Linear mixed-effects model for F2 in vowels. Reference level Program = H4n. 
 
Table S11 presents the summary of a linear mixed-effects model for center of gravity (COG) 

in fricatives as predicted by the device. There was a random intercept for speaker and for 
segment.  

The overall measurements were far higher in the ExternalComputerMic and 
InternalComputerMic conditions than in the baseline condition. This was largely due to the 
sibilants; COG measurements by fricative will be addressed near the end of this section. 
Measurements were also significantly higher in the Android condition. 

  
      Estimate  SE t-value p  

(Intercept)    2078.6 892.1 2.3 0.058 

Device Android    440.3 132.5 3.3 0.00095 

Device ExternalComputerMic  1172.5 132.5 8.9  < 0.001 

Device InternalComputerMic   1115.2 132.5 8.4 < 0.001 

Device iPad  -196.7 132.5 -1.5 0.14 

Device iPhone 125.3 132.5 0.95 0.34 

TABLE S11. Linear mixed-effects model for COG for fricatives. Reference level Program = 

H4n. 
 
 
IMPACT ON CONTRASTS. Effects of device in measurements of these characteristics are 

primarily a concern if they alter our ability to find contrasts. In this section, we test whether 
measurements of acoustic correlates of phonological contrasts are altered by the recording 
device. These selected contrasts are known to exist in English and should be reflected by the 
measurements that we are using. When the regression models found no significant interaction 
between Device and the phonological categories, the results are illustrated just with a figure. 

Figure S4 illustrates vowel duration as influenced by stress. The device did not have any 
substantial impact on these measurements. The effect of stress is significant or marginally 
significant in all conditions, and of a similar size. 
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FIGURE S4. Measured vowel duration as predicted by device and stress. Pooled raw data, not 

the model results. Whiskers indicate the standard error (= Figure 5 of main text). 
 
Figure S5 illustrates maximum f0 in vowels as influenced by stress. There are no substantial 

effects; all of the conditions find a significant effect, of a similar size. 
 

 
FIGURE S5. Measured F0 maximum as predicted by device and stress. Pooled raw data, not 

the model results. Whiskers indicate the standard error. 
 

Figure S6 illustrates vowel duration as influenced by coda voicing. There are no substantial 
effects, although overall vowel duration differs across devices; all of the conditions find a 
significant effect, though some of them seem to be overestimating the effect, which could be a 
concern. 
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FIGURE S6. Measured vowel duration as predicted by device and coda voicing. Pooled raw 

data, not the model results. Whiskers indicate the standard error. 
 
Table S12 presents the summary of a linear mixed-effects model for HNR in vowels as 

predicted by the device and the coda voicing. There was a random intercept for speaker.  
Vowels followed by voiceless codas generally have a lower HNR than vowels before voiced 

codas. None of the interactions reach significance, though several of the conditions seem to be 
underestimating the size of the effect, which is consistent with those conditions overall having 
more noise and thus lower HNR. Figure S7 illustrates HNR in vowels as influenced by coda 
voicing. 
 

      Estimate  SE t-value p  

(Intercept)    8.7 1.2 7.5 0.047 

Device Android    0.55 0.61 0.89 0.37 

Device ExternalComputerMic  0.38 0.61 0.62 0.54 

Device InternalComputerMic   -2.0 0.61 -3.3 0.0012 

Device iPad  -0.9 0.61 -1.5 0.14 

Device iPhone -0.55 0.61 -0.9 0.37 

FollowingVoicing Voiceless     -4.1 0.53 -7.8 < 0.001 

Device Android:FollowingVoicing Voiceless  0.034 0.75 0.046 0.96 

Device ExternalComputerMic:FollowingVoicing Voiceless  -0.66 0.75 -0.89 0.38 

Device InternalComputerMic:FollowingVoicing Voiceless  0.61 0.75 0.82 0.41 

Device iPad:FollowingVoicing Voiceless    0.83 0.75 1.1 0.27 

Device iPhone:FollowingVoicing Voiceless  0.43 0.75 0.58 0.56 

TABLE S12. Linear mixed-effects model for HNR in vowels, with coda voicing as a factor. 
Reference level Program = H4n, FollowingVoicing = voiced. 
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FIGURE S7. Measured HNR as predicted by device and coda voicing. Pooled raw data, not the 

model results. Whiskers indicate the standard error. 
 

Table S13 presents the summary of a linear mixed-effects model for HNR in vowels as 
predicted by the device and the onset voicing. There was a random intercept for speaker.  

HNR differences between voiced and voiceless onsets are slightly decreased for the 
InternalComputerMic, iPad and iPhone devices, which is a concern primarily because the 
difference is small even in the baseline condition. Differences may be due to boundary 
assignment, as modal voicing is a cue used to identify vowels. Figure S8 illustrates HNR in 
vowels as influenced by onset voicing. 
 

      Estimate  SE t-value p  

(Intercept)    6.9 1.38 5.0 0.086 

Device Android    0.7 0.68 1.0 0.3 

Device ExternalComputerMic  0.18 0.68 0.27 0.79 

Device InternalComputerMic   -1.8 0.68 -2.6 0.0096 

Device iPad  -0.54 0.68 -0.79 0.43 

Device iPhone -0.47 0.68 -0.69 0.49 

PrecedingVoicing Voiceless     -1.3 0.62 -2.2 0.033 

Device Android:PrecedingVoicing Voiceless  -0.2 0.88 -0.23 0.82 

Device ExternalComputerMic:PrecedingVoicing Voiceless  -0.35 0.88 -0.4 0.69 

Device InternalComputerMic:PrecedingVoicing Voiceless  0.53 0.88 0.6 0.55 

Device iPad:PrecedingVoicing Voiceless    0.35 0.88 0.4 0.69 

Device iPhone:PrecedingVoicing Voiceless  0.41 0.88 0.47 0.64 

TABLE S13. Linear mixed-effects model for HNR in vowels, with onset voicing as a factor. 
Reference level Program = H4n, PrecedingVoicing = voiced. 
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FIGURE S8. Measured HNR as predicted by device and onset voicing. Pooled raw data, not 

the model results. Whiskers indicate the standard error. 
 

Table S14 presents the summary of a linear mixed-effects model for spectral tilt in vowels as 
predicted by the device and the onset voicing. There was a random intercept for speaker.  

The effect is only marginally significant in the baseline condition; it is only a small effect, 
but has been established elsewhere (e.g. Kong et al. 2012). Though most of the differences are 
not significant, it is important to note that they are large relative to the size of the actual effect; 
there are clear distortions of spectral tilt, which are likely to obscure measurements. Figure S9 
illustrates spectral tilt in vowels as influenced by onset voicing. 
 

      Estimate  SE t-value p  

(Intercept)    -2.4 2.2 -1.1 0.42 

Device Android    -1.3 1.1 -1.1 0.25 

Device ExternalComputerMic  -1.3 1.1 -1.2 0.25 

Device InternalComputerMic   -0.42 1.1 -0.38 0.7 

Device iPad  0.23 1.1 0.2 0.83 

Device iPhone 0.86 1.1 0.78 0.43 

PrecedingVoicing Voiceless     1.8 1.0 1.8 0.074 

Device Android:PrecedingVoicing Voiceless  -0.98 1.4 -0.7 0.49 

Device ExternalComputerMic:PrecedingVoicing Voiceless  0.14 1.4 0.1 0.92 

Device InternalComputerMic:PrecedingVoicing Voiceless  -0.97 1.4 -0.69 0.49 

Device iPad:PrecedingVoicing Voiceless    -0.21 1.4 -0.15 0.88 

Device iPhone:PrecedingVoicing Voiceless  -0.24 1.4 -0.17 0.86 

TABLE S14. Linear mixed-effects model for spectral tilt, with onset voicing as a factor. 
Reference level Program = H4n, PrecedingVoicing = voiced. 
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FIGURE S9. Measured spectral tilt as predicted by device and onset voicing. Pooled raw data, 

not the model results. Whiskers indicate the standard error. 
 
Figure S10 illustrates maximum f0 in vowels as influenced by onset voicing. None of the 

effects are significant, but there is variation in how large the effect is estimated to be. 
 

 
FIGURE S10. Measured f0 maximum as predicted by device and onset voicing. Pooled raw 

data, not the model results. Whiskers indicate the standard error. 
 
Table S15 presents the summary of a linear mixed-effects model for COG in /s/ vs. /ʃ/ as 

predicted by the device. There was a random intercept for speaker.  
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      Estimate  SE t-value p  

(Intercept)    5053.7 559.0 9.0 0.058 

Device Android    632.7 181.6 3.5 0.00058 

Device ExternalComputerMic  1723.1 181.6 9.5  < 0.001  

Device InternalComputerMic   1359.7 181.6 7.5 < 0.001  

Device iPad  -460.4 181.6 -2.5 0.011810 

Device iPhone 226.6 181.6 1.2 0.21 

Segment /ʃ/     -1689.3 254.2 -6.6 < 0.001  

Device Android:Segment /ʃ/  -496.5 359.4 -1.4 0.17 

Device ExternalComputerMic:Segment /ʃ/  -1587.6 359.4 -4.4 < 0.001  

Device InternalComputerMic:Segment /ʃ/  -763.1 359.4 -2.1 0.035 

Device iPad:Segment /ʃ/    301.0 359.4 0.84 0.4 

Device iPhone:Segment /ʃ/  -253.8 359.4 -0.71 0.48 

TABLE S15. Linear mixed-effects model for COG in sibilant fricatives, with particular 
fricative as a factor. Reference level Program = H4n, Segment = /s/. 

 
The model finds the same effect noted above for overall COG measurements: The COG for 

/s/ is overestimated in the ExternalComputerMic condition and the InternalComputerMic 
condition. The interactions show that /ʃ/ is not as affected. Figure S11 illustrates COG by 
fricative. These results seem to be a combination of how well the microphones pick up low-
frequency noise and how much background noise they pick up. The effects of this problem 
would likely be smaller for recordings with a higher sampling rate. 
 

 
FIGURE S11. Measured center of gravity as predicted by device and segment, among 

fricatives. Pooled raw data, not the model results. Whiskers indicate the standard error. 
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Figure S12 illustrates F1 and F2 as influenced by vowel quality and device. Adding the 
interaction between vowel quality and device marginally improves the model for F1 (χ2 = 105.0, 
df = 84, p = 0.06). The interaction between vowel quality and device significantly improves the 
model for F2 (χ2 = 186.4, df = 84, p < 0.0001); the measured F2 varies considerably across 
conditions for some vowels. 

The device conditions in Phase 1 all clearly pick out a recognizable vowel space. However, 
some of the vowels are shifted enough that they would be likely to cause problems for analysis. 
In particular, F2 measurements for /u/ and /ou/ were very high in many of the conditions; this is 
in part due to issues in identifying boundaries or tracking low-intensity formants, which altered 
which part of the diphthong were measured. Many of the words with /u/ lacked codas, so failure 
to capture the back portion of the offglide of the vowel resulted in only measuring the fronter 
beginning portion. While other vowels did not all exhibit systematic effects, there are several 
vowels that have strikingly variable measurements across conditions. 
 

 
FIGURE S12. Vowel spaces for each speaker as measured in Phase 1, by-Device (= Figure 7 

of main text). 
 
 

2.2 EFFECTS OF PROGRAM. Here we present the full results for the effect of each program on 
the acoustic measurements. There were five software conditions compared to the H4n reference 
condition: Zoom, Skype, Cleanfeed, Facebook Messenger (recorded through Audacity, because 
it does not have an in-app recording option), and AudacityAlone. Note that four of these are 
testing applications for online transmission, while AudacityAlone is present to test whether the 
Audacity program causes effects in itself, to clarify how to interpret the results of the Messenger 
condition. 

For these comparisons, we used a single Zoom condition, recording locally with the default 
audio settings. Although we tested several different Zoom conditions, there were no differences 
between any of them: Local vs. remote, operating system, conversion from mp4, or the ‘Original 
Audio’ setting. None of the characteristics measured exhibited significant effects of recording 
condition. The models comparing Zoom conditions to each other are presented in Section 2.3 
below. 

 



18 

OVERALL EFFECTS. This section presents results for the main measurements of each phonetic 
characteristic by program; the following section will examine interactions between program and 
phonological predictors. 

Table S16 presents the summary of a linear mixed-effects model for consonant duration as 
predicted by the recording program. There was a random intercept for speaker.  

There were no significant consonant duration differences between the baseline recording and 
the recording made through Cleanfeed or Audacity alone. However, consonant durations were 
significantly shorter in all of the other conditions. Some of the effects on duration may be due to 
differences in intensity or background noise, which could alter the boundaries identified by 
forced alignment and would also be likely to produce similar effects in manual alignment, as 
discussed in Section 2.1 above. Some of the differences in duration might also reflect actual 
duration differences created by compression algorithms; see Section 2.5 for more discussion. 

 
      Estimate  SE t-value p 

(Intercept)    106.8 10.3 10.4 0.0072 

Program AudacityAlone 1.1 2.9 0.38 0.7 

Program Cleanfeed    -0.44 2.9 -0.15 0.88 

Program Messenger  -11.6 2.9 -4.0 < 0.001 

Program Skype    -8.5 2.9 -3.0 0.003 

Program Zoom    -11.2 2.9 -3.9 < 0.001 

TABLE S16. Linear mixed-effects model for consonant duration (in milliseconds). Reference 

level Program = H4n. 
 

Table S17 presents the summary of a linear mixed-effects model for vowel duration as 
predicted by the recording program. There was a random intercept for speaker. 

As for consonant duration, there were no significant vowel duration differences between the 
baseline recording and the recording made through Cleanfeed or AudacityAlone. However, 
vowel durations were significantly longer in all of the other conditions.  

 
      Estimate  SE t-value p 

(Intercept)    157.2 12.3 12.8 0.0025 

Program AudacityAlone -0.84 6.0 -0.14 0.89 

Program Cleanfeed    0.37 6.0 0.061 0.95 

Program Messenger  17.5 6.0 2.9 0.0039 

Program Skype    19.8 6.0 3.3 0.0011 

Program Zoom    31.5 6.0 5.2 < 0.001 

TABLE S17. Linear mixed-effects model for vowel duration (in milliseconds). Reference level 

Program = H4n. 
 
Table S18 presents the summary of a linear mixed-effects model for the mean f0 in vowels, 

as predicted by the recording program. There was a random intercept for speaker. 
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There was no significant effect on mean f0; none of the conditions differed significantly from 
the baseline H4n recorder. 
 

      Estimate  SE t-value p 

(Intercept)    181.1 3.8 48.2 < 0.001 

Program AudacityAlone 0.17 1.5 0.12 0.91 

Program Cleanfeed    -0.14 1.5 -0.095 0.92 

Program Messenger  -1.3 1.5 -0.87 0.38 

Program Skype    0.33 1.5 0.23 0.82 

Program Zoom    0.63 1.5 0.43 0.67 

TABLE S18. Linear mixed-effects model for mean f0 (in Hz) in vowels. Reference level 

Program = H4n. 
 
Table S19 presents the summary of a linear mixed-effects model for peak timing -- the 

position of the maximum f0 relative to the beginning of the vowel, as predicted by the recording 
program. There was a random intercept for speaker. 

The f0 peak timing was significantly later for Zoom than the baseline H4n condition. This 
result is probably related to the overestimated vowel duration in the Zoom condition, as 
described above. Because the beginnings of the vowels were placed earlier, the peak f0 was later 
relative to that starting point. However, it is worth considering why none of the other conditions 
have effects on peak timing, when several of them did have duration effects. The different results 
might be due to the size of the duration effect; Messenger and Skype had smaller effects on 
duration than Zoom did, so the corresponding differences in peak timing are smaller and do not 
reach significance. 
 

      Estimate  SE t-value p 

(Intercept)    33.7 6.5 5.2 0.014 

Program AudacityAlone -0.93 4.3 -0.21 0.83 

Program Cleanfeed    -0.073 4.3 -0.017 0.99 

Program Messenger  6.5 4.3 1.5 0.13 

Program Skype    5.0 4.3 1.1 0.25 

Program Zoom    14.2 4.3 3.3 0.001 

TABLE S19. Linear mixed-effects model for f0 peak timing (in milliseconds). Reference level 

Program = H4n. 
 
Table S20 presents the summary of a linear mixed-effects model for jitter in vowels, as 

predicted by the recording program. There was a random intercept for speaker. 
There was no significant effect of recording condition on measurements of jitter, though 

there was a marginal effect of the Zoom condition, finding more jitter than the H4n recorder. 
That is, there was more cycle-to-cycle variation in f0 as measured in the Zoom recording than in 
the baseline condition. 
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      Estimate  SE t-value p 

(Intercept)    0.019 0.0033 5.6 0.023 

Program AudacityAlone 0.00075 0.0012 0.63 0.53 

Program Cleanfeed    0.0011 0.0012 0.92 0.36 

Program Messenger  0.0008 0.0012 0.67 0.5 

Program Skype    0.00039 0.0012 0.32 0.75 

Program Zoom    0.0023 0.0012 1.9 0.059 

TABLE S20. Linear mixed-effects model for jitter in vowels. Reference level Program = H4n. 
 
Table S21 presents the summary of a linear mixed-effects model for spectral tilt (H1-H2) in 

vowels, as predicted by the recording program. There was a random intercept for speaker. 
All of the programs exhibited effects of spectral tilt. Most of them underestimated spectral 

tilt, while Messenger overestimated it. The effects suggest that transmission for many of these 
programs is worse for lower frequencies than for higher frequencies. Notably, this effect is even 
present in the AudacityAlone condition. On the other hand, the higher spectral tilt in the 
Messenger condition might suggest that Messenger is amplifying low frequencies, in addition to 
the effects of Audacity making the recording for the Messenger condition. 
 

      Estimate  SE t-value p 

(Intercept)    -1.6 1.6 -1.0 0.4 

Program AudacityAlone -1.4 0.5 -2.9 0.0041 

Program Cleanfeed    -1.3 0.5 -2.6 0.009 

Program Messenger  4.6 0.5 9.1 < 0.001 

Program Skype    -1.7 0.5 -3.3 < 0.001 

Program Zoom    -2.0 0.5 -3.9 < 0.001 

TABLE S21. Linear mixed-effects model for spectral tilt in vowels. Reference level Program 

= H4n. 
 
Table S22 presents the summary of a linear mixed-effects model for the Harmonics-to-Noise 

Ratio (HNR) in vowels, as predicted by the recording program. There was a random intercept for 
speaker. 

Messenger exhibited a much higher HNR than the baseline H4n condition. No other effects 
were significant, but they all have the trend towards being lower than the baseline, suggesting 
more noise. The much higher value for the Messenger condition is likely to have a different 
explanation; it is unlikely that this condition was capturing the periodic signal more reliably than 
the source recording. This result is not due to excluding unmeasurable items; no conditions 
excluded more than 3 tokens. The effect might come from amplification of low frequencies, as 
also probably underlies some of the effects in spectral tilt; low frequencies include the clearest 
harmonics, so if these frequencies are amplified, the HNR would appear to be higher. 
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      Estimate  SE t-value p 

(Intercept)    7.3 1.0 7.0 0.016 

Program AudacityAlone -0.34 0.29 -1.2 0.24 

Program Cleanfeed    -0.24 0.29 -0.84 0.4 

Program Messenger  1.2 0.29 4.2 < 0.001 

Program Skype    -0.3 0.29 -1.0 0.3 

Program Zoom    -0.4 0.29 -1.4 0.17 

TABLE S22. Linear mixed-effects model for HNR in vowels. Reference level Program = 

H4n. 
 
Table S23 presents the summary of a linear mixed-effects model for F1, as predicted by the 

recording program. There was a random intercept for speaker and for vowel. 
F1 was significantly lower in the Messenger condition than in the baseline condition. The 

cause of this effect is not entirely clear. A discussion of formant effects separated by vowel is 
presented at the end of this section, and offers more detail about possible sources of differences 
in formant measurements. 
 

      Estimate  SE t-value p 

(Intercept)    613.7 48.4 12.7 < 0.001 

Program AudacityAlone 1.5 8.8 0.17 0.87 

Program Cleanfeed    10.8 7.9 1.4 0.17 

Program Messenger  -29.7 7.9 -3.8 0.00018 

Program Skype    -3.5 7.9 -0.45 0.66 

Program Zoom    -11.1 7.9 -1.4 0.16 

TABLE S23. Linear mixed-effects model for F1 in vowels. Reference level Program = H4n. 
 
Table S24 presents the summary of a linear mixed-effects model for F2, as predicted by the 

recording program. There was a random intercept for speaker and for vowel. 
F2 was overestimated in all of the conditions, to varying degrees; the largest effect was in the 

Messenger condition. The end of this section addresses formant effects in more detail, separated 
by vowel.  
 

      Estimate  SE t-value p 

(Intercept)    1898.4 119.6 15.9 < 0.001 

Program AudacityAlone 36.1 21.2 1.7 0.088 

Program Cleanfeed    46.0 19.0 2.4 0.016 

Program Messenger  91.0 19.0 4.8 < 0.001 

Program Skype    42.0 19.0 2.2 0.027 

Program Zoom    31.4 19.0 1.7 0.099 

TABLE S24. Linear mixed-effects model for F2 in vowels. Reference level Program = H4n. 
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Table S25 presents the summary of a linear mixed-effects model for center of gravity (COG) 

in fricatives, as predicted by the recording program. There was a random intercept for speaker 
and for segment. 

COG was significantly lower in the Cleanfeed and Messenger conditions, and marginally 
higher in the Zoom condition. As in the Device comparisons, the largest effects are on /s/ and /z/. 
Further analysis of differences between fricatives are presented at the end of this section, along 
with a discussion of possible sources of these differences. 
 

      Estimate  SE t-value p 

(Intercept)    1923.9 549.3 3.5 0.0094 

Program AudacityAlone 220.6 140.6 1.6 0.12 

Program Cleanfeed    -653.3 126.1 -5.2 < 0.001 

Program Messenger  -904.1 126.1 -7.2 < 0.001 

Program Skype    -196.3 126.1 -1.6 0.12 

Program Zoom    220.7 126.1 1.7 0.08 

TABLE S25. Linear mixed-effects model for COG for fricatives. Reference level Program = 

H4n. 
 

 

IMPACT ON CONTRASTS. As noted for the comparisons by device, effects in these 
characteristics are primarily a concern if they alter our ability to find contrasts. In this section, we 
test whether contrasts depending on these characteristics are altered by the recording device.  

Figure S13 illustrates vowel duration as influenced by stress. The effect of stress on duration 
is significant or marginally significant in all program conditions, and of a similar size. 

 

 
FIGURE S13. Measured vowel duration as predicted by program and stress. Pooled raw data, 

not the model results. Whiskers indicate the standard error (= Figure 6 of main text). 
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Figure S14 illustrates F0 in vowels as influenced by stress. The program did not have any 

substantial impact on these measurements; there was a clear separation between stressed and 
unstressed vowels in all conditions, though there is some variation in the size of the effect. 

 

 
FIGURE S14. Measured f0 maximum as predicted by program and stress. Pooled raw data, not 

the model results. Whiskers indicate the standard error. 
 

Figure S15 illustrates vowel duration as influenced by coda voicing. The program did not 
have any substantial impact on these measurements, though there was variation in the size of the 
effect, and some conditions were substantially overestimating overall vowel duration. 

 

 
FIGURE S15. Measured vowel duration as predicted by program and coda voicing. Pooled raw 

data, not the model results. Whiskers indicate the standard error. 
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Figure S16 illustrates HNR in vowels as influenced by coda voicing. The program did not 
have any substantial impact on these measurements; the effect was a similar size in all 
conditions. 

 
FIGURE S16. Measured HNR as predicted by program and coda voicing. Pooled raw data, not 

the model results. Whiskers indicate the standard error. 
 

Figure S17 illustrates HNR in vowels as influenced by onset voicing. The program did not 
have any substantial impact on these measurements; the effect was a similar size in all 
conditions, even though Messenger substantially overestimated HNR for vowels in both 
environments. 

 
FIGURE S17. Measured HNR as predicted by program and onset voicing. Pooled raw data, not 

the model results. Whiskers indicate the standard error. 
 
Figure S18 illustrates spectral tilt in vowels as influenced by onset voicing. The program did 

not have any substantial impact on these measurements; the effect was a similar size in all 
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conditions, even though Messenger substantially overestimated spectral tilt for vowels in both 
environments. 

 
FIGURE S18. Measured spectral tilt as predicted by program and onset voicing. Pooled raw 

data, not the model results. Whiskers indicate the standard error. 
 
Figure S19 illustrates maximum F0 as influenced by onset voicing. The program did not have 

any substantial impact on these measurements. The effect of onset voicing was significant and of 
a similar size in all conditions. 

 

 
FIGURE S19. Measured f0 maximum as predicted by program and onset voicing. Pooled raw 

data, not the model results. Whiskers indicate the standard error. 
 

Table S26 presents the summary of a linear mixed-effects model for COG in /s/ and /ʃ/, as 
predicted by the recording program and segment. There was a random intercept for speaker. 
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Messenger was substantially underestimating /s/, to the point where it has a slightly lower 
COG than /ʃ/, and they do not differ substantially.  
 

      Estimate  SE t-value p 

(Intercept)    4735.9 224.2 21.1 < 0.001 

Program AudacityAlone 194.4 197.7 0.98 0.33 

Program Cleanfeed    -301.3 197.7 -1.5 0.13 

Program Messenger  -1676.7 197.7 -8.5 < 0.001 

Program Skype    -380.4 197.7 -1.9 0.055 

Program Zoom    509.3 197.7 2.6 0.01 

Segment /ʃ/      -1544.7 279.5 -5.5 < 0.001 

Program AudacityAlone:Segment /ʃ/ 73.2 395.3 0.19 0.85 

Program Cleanfeed:Segment /ʃ/ 465.0 395.3 1.2 0.24 

Program Messenger:Segment /ʃ/ 1744.0 395.3 4.4 < 0.001 

Program Skype:Segment /ʃ/    510.4 395.3 1.3 0.2 

Program Zoom:Segment /ʃ/    -206.3 395.3 -0.52 0.6 

TABLE S26. Linear mixed-effects model for COG in sibilant fricatives, with particular 
fricative as a factor. Reference level Program = H4n, Segment = /s/. 
 
 

 
FIGURE S20. Measured center of gravity as predicted by program and segment, among 

fricatives. Pooled raw data, not the model results. Whiskers indicate the standard error. 
 
Figure S20 illustrates COG across all fricatives. Zoom, Skype, and Messenger were also 

substantially overestimating the COG for /f/. Because the frication for /f/ is rather diffuse, this 



27 

could be the result of amplifying lower frequencies, or filtering out higher frequency aperiodic 
noise as ‘background noise.’ 

Figure S21 illustrates F1 and F2 as influenced by vowel quality and device. Adding the 
interaction between vowel quality and device significantly improves the model for F1 (χ2 = 
208.3, df = 85, p = < 0.0001). The interaction between vowel quality and device also marginally 
improves the model for F2 (χ2 = 102.3, df = 85, p = 0.097). There is substantial variation in the 
measurement of both formants in recordings made by different programs. These effects vary by 
vowel, which is why they did not show up as clearly in the some of the overall models for F1 and 
F2 above.  

Many of the conditions produce measurements that substantially shift a vowel far into the 
region of a different vowel, which is likely to cause major problems in phonetic analysis and 
even in phonological categorization of tokens. While clusters for measurements of each vowel 
are mostly apparent, Messenger Through Audacity is a clear outlier for most of the vowels. The 
differences in formant measurements are likely to reflect a combination of factors. Some 
differences are directly due to compression algorithms changing spectral information. Other 
differences are indirect effects of differences caused by the recording program; background noise 
and filtering or amplifying certain frequencies can change the apparent center of a frequency 
band and might also lead to the wrong formants being identified. 

 

 
FIGURE S21. Vowel spaces for each speaker as measured in Phase 2, by-Program (= Figure 8 

of main text). 
 
 
2.3. COMPARING ZOOM CONDITIONS. This section provides the models comparing 

measurements across the Zoom conditions -- this varied based on whether the recording was 
local or remote, whether the computer was mac or windows, whether the files were converted 
from mp4 or not, and whether the recording used the ‘Original Audio’ setting in Zoom or not. 
Comparing these conditions makes it possible to narrow down which aspects of Zoom are 
causing the observed differences. 

In most of these measures, there were clearly no effects. The variation between conditions is 
very small and in most cases there was substantially more variation within each condition than 
across conditions. The models are provided anyway, to give a sense of how similar the different 
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Zoom conditions are. For duration, two comparisons were marginally significant, but would not 
withstand correction for multiple comparisons. 

Table S27 presents the summary of a linear mixed-effects model for consonant duration as 
predicted by the recording condition. There was a random intercept for speaker.  

There were no significant consonant duration differences between the different conditions, 
though there were some small differences that did not reach significance.  
 

                  Estimate  SE t-value p  

(Intercept)            95.6 9.4 10.2 0.0064 

Condition Mac Local mp4          -0.73 3.4 -0.21 0.83 

Condition Mac Remote mp4  2.4 3.4 0.7 0.49 

Condition Mac Remote wav           5.4 3.4 1.6 0.11 

Condition Windows Remote wav           4.4 3.4 1.3 0.19 

Condition Mac Remote mp4 OriginalAudio 1.5 3.4 0.44 0.66 

Condition Mac Remote wav OriginalAudio 1.4 3.4 0.41 0.68 

TABLE S27. Linear mixed-effects model for consonant duration. Reference level Condition = 

Local, macOSX, not ‘original audio’, not from mp4. 

 
Table S28 presents the summary of a linear mixed-effects model for vowel duration as 

predicted by Zoom condition. There was a random intercept for speaker.  
Vowel duration in the Mac Remote mp4 condition was shorter than in the reference set of 

conditions. This effect was below the threshold of significance; however, it is important to keep 
in mind the large number of tests being conducted. When correcting for multiple comparisons, 
this effect is no longer significant. Given the lack of other significant effects, it is likely that this 
is merely due to multiple comparisons, rather than being a true effect of this particular condition 
in measurement of vowel duration. 
 

                  Estimate  SE t-value p  

(Intercept)            188.6 11.8 15.9 < 0.001 

Condition Mac Local mp4          -3.2 7.0 -0.45 0.65 

Condition Mac Remote mp4  -13.9 7.0 -2.0 0.047 

Condition Mac Remote wav           -13.4 7.0 -1.9 0.057 

Condition Windows Remote wav           -11.2 7.0 -1.6 0.11 

Condition Mac Remote mp4 OriginalAudio 0.28 7.0 0.04 0.97 

Condition Mac Remote wav OriginalAudio -0.68 7.0 -0.097 0.92 

TABLE S28. Linear mixed-effects model for vowel duration. Reference level Condition = 

Local, macOSX, not ‘original audio’, not from mp4. 

 

Table S29 presents the summary of a linear mixed-effects model for mean f0 in vowels as 
predicted by Zoom condition. There was a random intercept for speaker.  
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There was no effect of recording condition on f0 mean in any of the conditions; all of the 
differences were very small. 
 

                  Estimate  SE t-value p  

(Intercept)            181.7 3.8 48.1 < 0.001 

Condition Mac Local mp4          -0.35 1.6 -0.21 0.83 

Condition Mac Remote mp4  -0.46 1.6 -0.28 0.78 

Condition Mac Remote wav           -0.19 1.6 -0.12 0.91 

Condition Windows Remote wav           -0.51 1.6 -0.31 0.75 

Condition Mac Remote mp4 OriginalAudio 0.1 1.6 0.061 0.95 

Condition Mac Remote wav OriginalAudio 0.69 1.6 0.42 0.68 

TABLE S29. Linear mixed-effects model for mean f0 in vowels. Reference level Condition = 

Local, macOSX, not ‘original audio’, not from mp4. 

 

Table S30 presents the summary of a linear mixed-effects model for f0 peak timing -- the 
position of the maximum f0 relative to the beginning of the vowel, as predicted by Zoom 
condition. There was a random intercept for speaker.  

There was no significant effect of recording condition on f0 peak timing; there were some 
differences, but they were relatively small compared to the degree of variation found within each 
condition. 
 

                  Estimate  SE t-value p  

(Intercept)            48.0 7.2 6.6 0.0056 

Condition Mac Local mp4          0..22 5.0 0.044 0.96 

Condition Mac Remote mp4  -7.3 5.0 -1.4 0.15 

Condition Mac Remote wav           -7.1 5.0 -1.4 0.16 

Condition Windows Remote wav           -4.7 5.0 -0.94 0.35 

Condition Mac Remote mp4 OriginalAudio 0.1 5.0 0.02 0.98 

Condition Mac Remote wav OriginalAudio 1.2 5.0 0.23 0.81 

TABLE S30. Linear mixed-effects model for f0 peak timing in vowels (in milliseconds). 
Reference level Condition = Local, macOSX, not ‘original audio’, not from mp4. 

 

Table S31 presents the summary of a linear mixed-effects model for jitter in vowels as 
predicted by Zoom condition. There was a random intercept for speaker.  

There was no effect of recording condition on jitter; all of the differences between conditions 
were very small. 
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                  Estimate  SE t-value p  

(Intercept)            0.021 0.0035 6.0 0.02 

Condition Mac Local mp4          -0.000048 0.0013 -0.038 0.97 

Condition Mac Remote mp4  0.000044 0.0013 0.034 0.97 

Condition Mac Remote wav           0.0006 0.0013 0.47 0.64 

Condition Windows Remote wav           -0.00083 0.0013 -0.65 0.52 

Condition Mac Remote mp4 OriginalAudio -0.00019 0.0013 -0.15 0.88 

Condition Mac Remote wav OriginalAudio 0.00032 0.0013 0.25 0.8 

TABLE S31. Linear mixed-effects model for jitter in vowels. Reference level Condition = 

Local, macOSX, not ‘original audio’, not from mp4. 

 

Table S32 presents the summary of a linear mixed-effects model for spectral tilt (H1-H2) in 
vowels as predicted by Zoom condition. There was a random intercept for speaker.  

There was no effect of recording condition on spectral tilt. 
 

                  Estimate  SE t-value p  

(Intercept)            -3.6 1.9 -1.9 0.18 

Condition Mac Local mp4          0.16 0.54 0.29 0.77 

Condition Mac Remote mp4  -0.091 0.54 -0.17 0.87 

Condition Mac Remote wav           -0.02 0.54 -0.036 0.97 

Condition Windows Remote wav           -0.26 0.54 -0.47 0.64 

Condition Mac Remote mp4 OriginalAudio -0.31 0.54 -0.56 0.58 

Condition Mac Remote wav OriginalAudio -0.034 0.54 -0.063 0.95 

TABLE S32. Linear mixed-effects model for spectral tilt in vowels. Reference level Condition 

= Local, macOSX, not ‘original audio’, not from mp4. 

 

Table S33 presents the summary of a linear mixed-effects model for Harmonics-to-Noise 
Ratio in vowels as predicted by Zoom condition. There was a random intercept for speaker.  
 

                  Estimate  SE t-value p  

(Intercept)            6.9 0.96 7.2 0.016 

Condition Mac Local mp4          -0.0046 0.28 -0.017 0.99 

Condition Mac Remote mp4  0.16 0.28 0.56 0.57 

Condition Mac Remote wav           0.19 0.28 0.66 0.51 

Condition Windows Remote wav           0.31 0.28 1.1 0.27 

Condition Mac Remote mp4 OriginalAudio 0.0017 0.28 0.006 0.99 

Condition Mac Remote wav OriginalAudio 0.00078 0.28 0.003 0.99 

TABLE S33. Linear mixed-effects model for HNR in vowels. Reference level Condition = 

Local, macOSX, not ‘original audio’, not from mp4. 
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There was no effect of recording condition on the Harmonics-to-Noise Ratio. 
 
Table S34 presents the summary of a linear mixed-effects model for F1 in vowels as 

predicted by the recording condition. There was a random intercept for speaker and for vowel.  
There was no effect of recording condition on F1. 

 
                  Estimate  SE t-value p  

(Intercept)            605.7 48.4 12.5 < 0.001 

Condition Mac Local mp4          1.6 5.0 0.33 0.74 

Condition Mac Remote mp4  2.9 5.0 0.57 0.57 

Condition Mac Remote wav           4.1 5.0 0.81 0.42 

Condition Windows Remote wav           2.8 5.0 0.55 0.58 

Condition Mac Remote mp4 OriginalAudio 2.7 5.0 0.53 0.59 

Condition Mac Remote wav OriginalAudio 8.9 5.0 1.8 0.079 

TABLE S34. Linear mixed-effects model for F1 in vowels. Reference level Condition = Local, 

macOSX, not ‘original audio’, not from mp4. 

 
Table S35 presents the summary of a linear mixed-effects model for F2 in vowels as 

predicted by the recording condition. There was a random intercept for speaker and for vowel.  
There was no effect of recording condition on F2. 

 
                  Estimate  SE t-value p  

(Intercept)            1934.0 128.0 15.1 < 0.001 

Condition Mac Local mp4          6.3 18.0 0.35 0.73 

Condition Mac Remote mp4  -2.1 18.0 -0.12 0.91 

Condition Mac Remote wav           -1.1 18.0 -0.062 0.95 

Condition Windows Remote wav           4.3 18.0 0.24 0.81 

Condition Mac Remote mp4 OriginalAudio 10.0 18.0 0.56 0.58 

Condition Mac Remote wav OriginalAudio 25.2 18.0 1.4 0.16 

TABLE S35. Linear mixed-effects model for F2 in vowels. Reference level Condition = Local, 

macOSX, not ‘original audio’, not from mp4. 

 

Table S36 presents the summary of a linear mixed-effects model for center of gravity (COG) 
in fricatives as predicted by the recording condition. There was a random intercept for speaker 
and for segment.  

Most of the conditions had a slightly higher COG than in the recording made locally on a 
Mac, not using the ‘original audio’ setting and without conversion from mp4. The comparisons 
do not remain significant when adjusting for multiple comparisons.  
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                  Estimate  SE t-value p  

(Intercept)            1902.8 660.8 2.9 0.024 

Condition Mac Local mp4          282.0 110.0 2.6 0.011 

Condition Mac Remote mp4  244.1 110.0 2.2 0.027 

Condition Mac Remote wav           196.9 110.0 1.8 0.074 

Condition Windows Remote wav           256.8 110.0 2.3 0.02 

Condition Mac Remote mp4 OriginalAudio 267.329 110.0 2.4 0.015 

Condition Mac Remote wav OriginalAudio 242.739 110.0 2.2 0.028 

TABLE S36. Linear mixed-effects model for COG in fricatives. Reference level Condition = 

Local, macOSX, not ‘original audio’, not from mp4. 

 

2.4. SIGNAL-TO-NOISE RATIO. This section reports the measurements of signal-to-noise ratio 
(SNR) in each condition, both for Phase 1 (comparisons by device) and Phase 2 (comparisons by 

program). SNR was calculated following the formula given in 1. 

 
(1) SNR = 20log(Psignal/Pnoise) 

 

Figure S22 plots the average signal to noise ratio across each condition. It was calculated by 
measuring the mean energy in the ‘signal’ (that is, from the words used in the analysis) 
compared to the background noise, as measured in intervals labeled as silence, using the 
following formula. 
 

 
FIGURE S22. Signal to noise ratio by condition, across all devices and programs. 
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Signal to noise ratio should be above 50 DH for adequate recordings. Here the highest signal 

to noise ratios come from the Zoom recordings, presumably as an effect of the Zoom software 
suppressing background noise. Our gold standard recording did not have a particularly high 
signal to noise ratio, compared to some of the other recording devices used in the live recording 
condition. This is probably due in part to the sensitivity of the H4n’s microphone and picking up 
background noise from the air conditioning system and external traffic noise.2 Some of the 
software programs include filters to amplify what is identified as speech or suppress sounds that 
are identified as background noise; while this may improve perceptual clarity, it is altering the 
acoustic signal and could potentially influence the results in misleading ways, so having a higher 
SNR is not necessarily indicative of a better recording. 

Table S37 presents the summary of a linear mixed-effects model for SNR as predicted by 
device. SNR was calculated for each sentence, using the maximum amplitude of the target word 
and of the silence following the sentence. There was a random intercept for speaker. 
 

      Estimate  SE t-value p  

(Intercept)    57.0 4.4 12.8 0.045 

Device Android    10.2 1.0 10.1 < 0.001 

Device ExternalComputerMic  19.2 1.0 19.0 < 0.001 

Device InternalComputerMic   -11.5 1.0 -11.4 < 0.001 

Device iPad  -13.7 1.0 -13.5 < 0.001 

Device iPhone -15.5 1.0 -15.3 < 0.001 

TABLE S37. Linear mixed-effects model for SNR. Reference level Program = H4n. 

 

Table S38 presents the summary of a linear mixed-effects model for SNR as predicted by 
program. There was a random intercept for speaker. 
 

      Estimate  SE t-value p  

(Intercept)    57.9 1.8 31.6 < 0.001 

Program AudacityAlone 7.4 1.4 5.5 < 0.001 

Program Cleanfeed    8.5 1.4 6.3 < 0.001 

Program Messenger 17.4 1.4 12.9 < 0.001 

Program Skype    21.7 1.4 16.1 < 0.001 

Program Zoom    41.9 1.4 31.0 < 0.001 

TABLE S38. Linear mixed-effects model for SNR. Reference level Program = H4n. 
 
Keep in mind that SNR is based on the amplitude of the target words and the amplitude of 

the background noise as measured in the pauses between utterances. Reduction of noise when 

 
2 As mentioned in the main article, we attempted to mimic a reasonable field situation in that we recorded in a 
‘quiet’ room but did not attempt to remove all background noise. While the building was quiet, there was both noise 
from the building’s air conditioning system and traffic noise from the street outside.  
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there is no speech does not necessarily mean that a program like Zoom was equally effective at 
reducing background noise during speech, or that it removed noise in a way that leaves crucial 
acoustic characteristics of the speech signal intact. 

Differences in the amplitude of the signal and the background noise could directly impact 
some acoustic measures, including intensity, center of gravity, and the harmonics-to-noise ratio, 
which are each discussed above. Differences in amplitude are also likely to be part of the 
explanation for differences in identification of segment boundaries. However, as will be 
discussed in the following section, differences in segmentation are not all indirect effects of 
amplitude or other characteristics. 

 
 
2.5. TIMING ISSUES. To account for whether duration differences and other measurement 

differences were due to how the forced aligner was placing boundaries or if they were the result 
of actual duration differences caused by the condition, we tried combining these recordings with 
the textgrids produced for the baseline condition. The recordings were made under identical 
conditions (either because they were made at the same time or recorded from the H4n recorder’s 
output), so the intervals should be identical; if they indeed are the same, the boundaries identified 
in the solid state recording condition should be transferable across all recording conditions, i.e. 
the textgrids produced for the H4n condition could be used for analysis in all condition. 

However, the textgrids from the baseline condition do not align with the other conditions. 
Because of the substantial timing differences, it was impossible to use the textgrids from the 
baseline condition to make measurements in the other recording conditions. The lack of 
alignment across conditions makes clear that the compression/decompression systems of these 
programs created differences in timing. While the changes for any individual word are small 
(about 10 ms at most), these small mis-alignments can combine to produce substantial 
misalignment between recordings. (Note that for analytical purposes all files were aligned 
individually, so these offsets are not driving the differences between results). Many of the 
changes in timing can be attributed to compression in the silences between utterances, but there 
are also likely to be effects of compression during the utterances. 

The following figures plot the difference between the interval timestamps for the gold 
standard H4n versus three recording conditions (Messenger, Cleanfeed, and Zoom), to illustrate 
the extent of the timing differences. Because the order in which the stimuli were presented was 
randomized between speakers, measurements are done separately for individual speakers.  

As can be seen from Figures S23 and S24, the Zoom condition (in black) produced 
boundaries close to the boundaries in recordings from the ‘gold standard’ H4n recorder. The 
Messenger and Cleanfeed conditions, however, can differ from the H4n recorder by several 
hundred milliseconds.  

To see an example comparing alignments alongside a spectrogram, consider Figure S1 
above, which shows a comparison of alignments for sample words. 



35 

 
FIGURE S23. Difference in alignment between the H4n and three Program conditions 

(Messenger, Cleanfeed, and Zoom) for Speaker 1 (CS). 
 
 

 
FIGURE S24. Difference in alignment between the H4n and three Program conditions 

(Messenger, Cleanfeed, and Zoom) for Speaker 2 (CB). 
 
 

2.6. ADDITIONAL COMMENTS ON SOFTWARE. Here we offer some additional impressionistic 
summary comments about the software options and their relative reliability and ease of use, for 
researchers who are intending to make online recordings. 

Cleanfeed was very user-friendly and performed well overall. It is probably the least well 
known of the set of software options tested here (but is used in podcasting interviews). It was 
straightforward to set up. The software allows the user to choose which speakers to record and 
how to record them (separate tracks, together, etc.). Individual participants can be muted. Muting 
individual participants was not particularly important for our tests but using this would allow a 
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way to have multiple remote participants while avoiding possible interference. However, it has a 
big drawback that video is not present, which limits its effectiveness. 

Skype and Zoom are well known to participants; they are easy to set up and use. However, 
they exhibit extensive digital artefacts, so it is important to be careful when using these 
programs. Information about the conditions of recording (including any settings) should be 
included with recording metadata. 

Facebook Messenger performed poorly in our tests, frequently giving outputs that differ 
from all the other conditions. Because Audacity alone behaves like the gold standard for almost 
all tests, the effects of Messenger recorded through Audacity, the effects cannot be attributed to 
Audacity itself. However, the effects might be due to how Messenger compresses the audio or in 
how Audacity interacts with audio input from Messenger. Messenger is widely available, but 
provides little control over recordings and produces unreliable results. 

 

3. LIST OF STIMULI 

 
Table S39 provides a list of the words elicited for analysis. The order of items was 

randomized for each speaker. Words occurred within the frame sentence ‘We say ____ again.’ 
 

bad cheap fade leave rib ten insult (n.) 

badge chest fan mace rich tick insult (v.) 

base chew file match ridge tongue permit (n.) 

bat chip fuss maze rim tug permit (v.) 

batch choke fuzz mob rip van survey (n.) 

batch chug gap mop roam vase survey (v.) 

bead clock half neck robe vote suspect (n.) 

bean clog have paid sap wash suspect (v.) 

bet deck jest pet sheep watch torment (n.) 

bid den joke pick ship wish torment (v.) 

bit dip jug pig shoe witch  

boat do lash pile sick zap  

cab edge latch plod sue zip  

cap etch leaf plot tap zoo  

TABLE S39. Words used as stimuli. 
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4. SCRIPTS, RECORDINGS, and DATA 

 
Scripts, stimuli, audio files, text grids, and raw result files have been uploaded to osf, at the 

following address: https://osf.io/yf9k8/?view_only=9458f75d3fdd4dadb98164e7d9f07560. In 
addition, the following Praat scripts were used. 

 

 
Duration, jitter, mean f0, HNR: The script is included with the supplementary materials, 

DurationVoiceReportExtractor. 

 
Peak timing: The script was modified from McCloy, Daniel. 2012. PRAAT SCRIPT "SEMI-

AUTO PITCH EXTRACTOR". GitHub repository. https://github.com/drammock/praat-

semiauto/blob/master/SemiAutoPitchAnalysis.praat 
 

Spectral tilt: Vicenik, Chad. n.d. PraatVoiceSauceImitator. Praat Script Resources. 
http://phonetics.linguistics.ucla.edu/facilities/acoustic/PraatVoiceSauceImitator.txt 

 

Formants: McCloy, Daniel & August McGrath. 2012. PRAAT SCRIPT "SEMI-AUTO 
FORMANT EXTRACTOR". GitHub repository. https://github.com/drammock/praat-

semiauto/blob/master/SemiAutoFormantExtractor.praat 

 
Center of Gravity (COG): DiCanio, Christian. 2013. Spectral moments of fricative spectra 

script in Praat. Scripts. 

https://www.acsu.buffalo.edu/~cdicanio/scripts/Time_averaging_for_fricatives_2.0.praat 
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