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A Panel Travel Cost Model Accounting for
Endogenous Stratification and Truncation:

A Latent Class Approach
Stephen Hynes and William Greene

ABSTRACT. In this paper, we develop a panel data
negative binomial count model that corrects for en-
dogenous stratification and truncation. We also in-
corporate a latent class structure into our panel spec-
ification, which assumes that the observations are
drawn from a finite number of segments, where the
distributions differ in the intercept and the coefficients
of the explanatory variables. The paper argues that
count data panel models corrected for on-site sam-
pling may still be inadequate and potentially mis-
leading if the population of interest is heterogeneous
with respect to the impact of the chosen explanatory
variables. (JEL Q51, Q57)

I. INTRODUCTION

The travel cost method (TCM) of nonmar-
ket valuation, based on the count nature of
recreation trips, can only measure values as-
sociated with the current use of a recreational
site. However, an analyst, site manager, or
policy maker may be more interested in the
value to the user of potential changes to the
facilities of a site or the value associated with
some environmental change at the site. An ex-
tension to TCM surveys, therefore, has been
to supplement the usual questions related to
trips taken with one or more contingent be-
havior questions in which recreationalists are
asked to state the number of trips they would
take given either changes in site quality or
changes in trip prices. This revealed and con-
tingent response data can then be used in
count data models to estimate the change in
welfare associated with the change in the site
or environmental attribute (Hanley, Bell, and
Alvarez-Farizo 2003).
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Combining revealed preference informa-
tion and intended behavior responses involves
obtaining multiple responses from the same
individual. As such, an individual’s multiple
responses will likely be correlated due to in-
dividual specific but unobservable character-
istic and taste parameters. Standard statistical
count models fail to account for this correla-
tion and are therefore inefficient.1 Panel esti-
mators such as fixed and random effects Pois-
son and negative binomial models have been
previously employed to account for the pos-
sible correlation of multiple responses of the
same individual (Greene 2008).

Endogenous stratification and truncation
are two other important issues of relevance for
contingent behavior models when the data has
been collected on-site. Truncation refers to the
fact that on-site data contains information on
active visitors only and is therefore truncated
at positive demand for trips to the site (Shaw
1988; Englin and Shonkwiler 1995). Sec-
ondly, an on-site survey is subject to the prob-
lem of endogenous stratification where due to
the method of data collection the likelihood
of being sampled depends on the frequency
with which an individual visits the site. To
date, few attempts have been made to account
for these on-site sampling issues in panel data

1 It has also been previously noted that estimates from
TCM models that combine both stated and revealed trip in-
formation should result in more efficient parameter esti-
mates, as more information on the same set of underlying
preferences is employed in constructing the estimates (Han-
ley, Bell, and Alvarez-Farizo 2003).

The authors are, respectively, senior researcher, So-
cio-Economic Marine Research Unit, J. E. Cairnes
School of Business and Economics, National Univer-
sity of Ireland, Galway; and professor, Economics
Department, Stern School of Business, New York
University, New York.
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count models. Researchers who have done so
include Egan and Herriges (2006), Beaumais
and Appéré (2010), and Moeltner and Shonk-
wiler (2010).

However, even the on-site-adjusted Pois-
son-based panel models used in these studies
may be inadequate and potentially misleading
if the recreational group of interest is hetero-
geneous with respect to the impact of explan-
atory variables. We account for this issue in
this paper by extending a panel negative bi-
nomial model corrected for endogenous strat-
ification and truncation to control for unob-
served heterogeneity through the use of a
latent class modeling framework that assumes
that the observations are drawn from a finite
number of segments, where the distributions
differ in the intercept and the coefficients of
the explanatory variables.

II. THE CONTINGENT BEHAVIOR
MODELING APPROACH AND
ACCOUNTING FOR ON-SITE

SAMPLING IN PANEL DATA COUNT
MODELS

There have been several attempts in the lit-
erature to combine the TCM revealed prefer-
ence method and stated preference contingent
valuation approaches to nonmarket valuation
in the form of the contingent behavior model.
This is done with the objective of measuring
the welfare impact of a hypothetical change
in implicit price or in environmental quality
(Whitehead et al. 2008a). Examples of the use
of the contingent behavior TCM approach in
recreational demand modeling include studies
by Englin and Cameron (1996), Grijalva et al.
(2002), Hanley, Bell, and Alvarez-Farizo
(2003), Christie, Hanley, and Hynes (2007),
Martinez-Espineira and Amoako-Tuffour
(2008), and Beaumais and Appéré (2010).2

While the majority of contingent behavior
studies use panel rather than pooled count
data specifications, other approaches have in-
cluded panel data ordinary least squares mod-

2 For an in-depth review of the contingent behavior mod-
eling literature, the interested reader should see Whitehead
et al. (2008b).

els (Englin and Cameron 19963), binary probit
and random effects probit models (Loomis
1997), and panel tobit models (Azevedo, Her-
riges, and Kling 2003). What does stand out
from the literature is the fact that the correc-
tion for endogenous stratification and trunca-
tion in contingent behavior models has, until
very recently, been largely ignored. To avoid
dealing with the issue of truncation in panel
count data specification, many studies have
discussed their per trip welfare estimates as
being representative of their sample only and
not of the general population of users (e.g.,
Hanley, Bell, and Alvarez-Farizo 2003; Star-
buck et al. 2006; Christie, Hanley, and Hynes
2007).

The noncorrection of contingent behavior
models based on on-site sampled data for en-
dogenous stratification is even more prevalent
in the literature than the nonadjustment for
truncation. This may be due to the fact that
there is no standard program available in sta-
tistical packages to deal with endogenous
stratification in panel data count models and
therefore some studies have simply pooled the
revealed and contingent observation points
and run endogenously stratified truncated
Poisson or negative binomial models, which
are routinely available. For example Starbuck,
Berrens, and McKee (2006) employed a
pooled endogenously stratified truncated
Poisson model to estimate consumer surplus
and predict changes in recreation visits to a
forest site under three alternative management
scenarios. This pooling technique ignores the
fact that there is likely to be substantial cor-
relation between the revealed and contingent
behavior responses from the same individual.

It is also worth noting that a simple ad-
justment used to correct for endogenous strat-
ification in the univariate Poisson model is to
transform the dependent variable, Yi (number
of trips taken by individual i), to equal Yi−1
(this adjustment is possible assuming a uni-
variate Poisson distribution for the dependent

3 Englin and Cameron (1996) also applied a fixed effects
Poisson model to compare to the fixed effects ordinary least
squares model and to test for differences in price elasticities
and consumer surplus from separate demand equations es-
timated with observed number of trips and intended number
of trips for three hypothetical cost increases.



89(1) Hynes and Greene: Travel Cost Models 179

variable and Shaw’s [1988] derived on-site
sampling distribution). Hesseln, Loomis, and
González-Cabánc (2004) use this adjustment
technique in a pooled contingent behavior
model that examines the effects of fire on hik-
ing demand in Montana and Colorado. How-
ever, as Egan and Herriges (2006) point out,
the above technique applies only to the uni-
variate setting, and this simple adjustment is
not appropriate with the use of the panel data
specification.

Others have used strategies that avoid the
need to account for endogenous stratification
at all in a TCM framework by intercepting
visitors away from the study site, either using
club member registers to target the relevant
respondents for a site (Scarpa, Thiene, and
Tempesta 2007) or intercepting recreational-
ists close to the study site (Mendes and
Proença 2009). In these cases, a zero-inflated
travel cost model is employed where the zero
trip observations are assumed to be generated
from one of two processes. The model takes
into account that some respondents derive
zero utility from the recreational activity (trip
outcomes are always zero and not generated
by the Poisson process), while others are in
the market for the recreational activity but op-
timally choose zero trips to the study site (the
usual Poisson process applies, and the zeros
represent the individual’s utility maximizing
recreation decision).4 Elsewhere, Hynes and
Hanley (2006) avoid the need of adjusting
their truncated negative binomial TCM for en-
dogenous stratification by combining data
from their on-site survey with a non-site-
based survey—in their case, survey data col-
lected via the Internet. In this manner the sam-
ple incorporates individuals who visit the
recreational site but who have a lower prob-
ability of being sampled on-site due to less
frequent visits.

It has also been suggested that the issue of
endogenous stratification can be dealt with in
a panel data count specification by simply ap-

4 For further discussion on the use of methods that in-
tercept respondents away from the study site but ask about
frequency of visits to that site (and the use of associated
zero-inflated trip demand models), the interested reader
should see Shaw and Jakus (1996) and Martinez-Espineira
(2007) for further discussion.

plying a sampling weight to observations
equal to the inverse of the estimated proba-
bility that an individual will visit the site. This
reduces the proportional influence on the es-
timated model of individuals that have a
higher probability of being included in the
sample because of the on-site sampling design
(i.e., those who are more likely to be sampled
due to the increased frequency with which
they visit the recreational site). Wooldridge
(2002) demonstrates how this inverse proba-
bility weighting recovers the population mo-
ments from a selected sample.

As mentioned in Section I, only three pa-
pers to date have produced a panel data count
model that explicitly corrects for both trun-
cation and endogenous stratification. These
are by Egan and Herriges (2006), Beaumais
and Appéré (2010), and Moeltner and Shonk-
wiler (2010). In the case of Egan and Herriges
(2006), the authors develop a multivariate
Poisson log-normal model to jointly model re-
vealed and contingent behavior data and to
correct for on-site sampling. They also esti-
mate Winkelmann’s (2000) seemingly unre-
lated negative binomial model, also adjusted
for truncation and endogenous stratification.
The authors conclude that there is substantial
bias in the results if the sampling procedures
are ignored, overstating both the average
number of trips to the site (by a factor of 14)
and the welfare associated with the recrea-
tional opportunities at study site.

Beaumais and Appéré (2010) extend the
work of Egan and Herriges (2006) by address-
ing the on-site sampling issue within the
framework of a random-effect Poisson gamma
model.5 Their modeling approach constrains
the correlation across counts for the same panel
to be positive. This is not a priori the case of

5 Beaumais and Appéré (2010) also introduce the con-
cept of a “twin site.” In their surveying approach they intro-
duce to the respondent the hypothetical existence of a site
strictly identical to the study site with a difference only in
the environmental quality of certain attribute and try and
establish the maximum distance the respondents would be
willing to travel to such an alternative site and the number
of extra trips if any that individuals would make to such a
site. This approach to defining the hypothetical scenario in
a contingent behavior study differs from that usually found
in the literature, where the change in environmental condi-
tion is defined in terms of the study site itself.
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Egan and Herriges’s (2006) multivariate Pois-
son log-normal specification. Similar to Egan
and Herriges, Beaumais and Appéré (2010)
and Moeltner and Shonkwiler (2010) also find
that correcting for on-site sampling has a sig-
nificant impact on model parameters and the
consumer surplus estimates.

Finally, it should be noted that count data
panel models that incorporate unobserved het-
erogeneity, with respect to the impact of the
explanatory variables have also been previ-
ously developed. For example, Wang, Cock-
burn, and Puterman (1998), in the analysis of
patent data, developed Poisson regression
models for count data that accommodated het-
erogeneity arising from a distribution of both
the intercept and the coefficients of the ex-
planatory variables. The study assumed that
the mixing distribution was discrete, resulting
in a finite mixture model formulation. There
have also been other papers using latent class
approaches in count travel cost models.
Scarpa, Thiene, and Tempesta (2007), for ex-
ample, examined the existence of latent
classes in the total demand for recreational
days in the eastern Italian Alps by applying
finite mixing to a zero-inflated cross-sectional
count demand model. Elsewhere, Baerenklau
(2010) also used a latent class approach to in-
corporate unobserved heterogeneity into an
aggregate count data framework in an effort
to control for endogenous spatial sorting in
zonal recreation models. Advances in com-
putational capabilities have also meant that
statistical packages such as Nlogit (Greene
2007) now contain standard commands that
allow the researcher to readily incorporate a
discrete mixture distribution into panel count
models.

As is evident from the previous (nonex-
haustive) review of the literature, much has
been written in terms of the issues surround-
ing on-site sampling issues related to the
TCM. To date, however, no count data model
exists for panel data that simultaneously ac-
counts for the on-site sampling issues of en-
dogenous stratification and truncation and the
presence of unobserved heterogeneity via
slope coefficients for the explanatory vari-
ables. The specification of such a model is
presented in the following section. In partic-
ular, we develop a random effects panel data

model with a latent class framework that also
accounts for truncation and endogenous strat-
ification.

III. METHODOLOGY

In our study of recreational demand at Sil-
verstrand Beach, Ireland, the variables of in-
terest are a count of beach trip demand in the
previous 12 months and a count of potential
beach trip demand that the same individuals
would make given some hypothetical change
in site quality or facilities. In effect, each per-
son i in the data set yields two responses. The
first is the number of trips (yi1) the person
makes to the beach under current conditions
(response or scenario t = 1), and the second
observation is how many trips (yi2) the person
says he or she would make if a specified im-
provement in recreational facilities at the
beach occurs under hypothetical conditions
(response or scenario t = 2). These counts are
limited to nonnegative integers. In the contin-
gent behavior modeling framework, we re-
quire a panel data modeling approach. The
distribution of data on beach trip recreation is
also positively skewed toward zero, thus pre-
venting the use of a standard ordinary linear
regression model.

Following the work of Shaw (1988), Grog-
ger and Carson (1991), Englin and Shonk-
wiler (1995), and Greene (2008) we assume
that, based on such data, a panel data count
model of recreational demand can be esti-
mated using a negative binomial distribution
for the dependent count variable. As with En-
glin and Shonkwiler (1995) we also need to
adjust our modeling strategy to control for the
fact that our data were collected on site.
Unique in the literature, we also adjust our
random effects panel data negative binomial
model corrected for on-site sampling to allow
for the mixing of taste intensities over a finite
group of taste segments in the population. Un-
observed heterogeneity in the distribution of
yit is assumed to impact the mean (and vari-
ance) λit. The continuous distribution of the
heterogeneity is approximated using what
Greene (2008) refers to as a finite number of
“points of support.” The distribution is ap-
proximated by estimating the location of the
support points and the mass probability in
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each interval. We interpret this discrete ap-
proximation as producing a sorting of individ-
uals into C classes, c = 1, . . . , C. Therefore, in
what follows we modify our random effects
panel data negative binomial model corrected
for on-site sampling for a latent sorting of yit
into C classes.

Our starting point for a panel of trip data,
I = 1, . . . , N individuals and t = 1, . . . , Ti re-
sponses (here, Ti = 2) for that individual, is the
standard negative binomial model for count
data that allows for overdispersion in the re-
sponses:

1/α yΓ(y +1/α) 1/α λ
P(y⎪x) = , [1]( ) ( )Γ(1/α)Γ(y +1) λ+1/α λ+1/α

where λ = exp(β′x) is the conditional mean
function and 1/α is the overdispersion param-
eter (for convenience at this point, observation
subscripts are omitted). The vector x repre-
sents the set of explanatory variables reported
for each individual i. It is a k×1 vector of
observed covariates, and β is a k×1 vector of
unknown slope parameters. The scalar α and
the vector β are parameters to be estimated
from the observed sample. Finally α is a struc-
tural parameter to be estimated along with β.
Larger values of α correspond to greater
amounts of overdispersion. The model re-
duces to the Poisson when α = 0.

The density that applies to the observations
obtained on site was shown by Shaw (1988)
to equal

yP(y⎪x)
P(y⎪x, on site) = . [2]

∞ P(s⎪x)�s = 1

For the negative binomial model in particular,
the result (see Englin and Shonkwiler 1995,
106, [9]) is

P(y⎪x, on site) =
y y −1 −(y +1/α)yΓ(y +1/α)α λ (1+αy)

,
Γ(1/α)Γ(y +1)

y = 1,2, . . . . [3]

The second extension in our model is the
accommodation of the latent sorting of indi-
viduals into C groups, or classes. The analyst

does not observe directly which class,
c = 1, . . . , C, generated observation , andy ⎪cit
class membership must be estimated. The la-
tent class model, in generic form, conditioned
on the particular class can therefore be written
as

P(y⎪x, on site, class = c) = F(y⎪x,β ,α ). [4]c c

It should be noted that there is a separate dis-
persion parameter in each class as well. The
unconditional prior probabilities attached to
the latent classes are given by

exp(τ )c
π = Prob(class = c) = . [5]c C exp(τ )�q = 1 q

The logit formulation for the probabilities is
a convenient parameterization that allows the
prior class probabilities to be constrained to
the unit interval and to sum to one. The nor-
malization τC = 0 is imposed because only
C−1 parameters are needed, with the adding
up restriction, to specify the C probabilities.
With this structure, there is a one to one cor-
respondence between the set of parameters
(τ1, . . . , τC−1,0) and the set of class probabil-
ities (π1, . . . , πC−1,1− πc). For an in-C = 1�c = 1
dividual observation, the unconditional prob-
ability is averaged over the classes,

CP(y⎪x, on site) = �c = 1

π P(y⎪x, on site, class = c). [6]c

The probability P(y⎪x, on site) is the term that
enters the log likelihood that is maximized to
obtain the estimates of θ = [(β ,α ),(β ,α ),1 1 2 2

. The log likelihood. . . ,(β ,α ),(τ , . . . ,τ )]C C 1 C
for the observed sample is, therefore,

N ClogL = log� �i = 1 c = 1�
π P(y ⎪x ,(β ,α ), on site, class = c) , [7]c i i c c �

where πc is given in [5] and P(yi⎪xi,(βc,αc)
on site, class = c) is given in [3] with
λi = exp(βc′xi).

Individuals are observed more than once in
the sample. We make the usual assumption
that conditional on the class membership,
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which does not change for the person, the trip
choices are made independently. There is cor-
relation induced across choices in that the ob-
served variables, xi, are correlated across vis-
its and, as well, since the class membership is
fixed, the individuals’ preferences, embodied
in βc, are also common across visits. How-
ever, we have not assumed that there are un-
observed factors that are omitted from the
model and that are correlated across visits.
With these assumptions, the joint probability
of the Ti trip choices by individual i is given
by

P(y , . . . ,y ⎪x , . . . ,x ,β ,α , on site, classi1 iT i1 iT c ci i

Ti= c) = P(y ⎪x ,β ,α , on site, class = c). [8]� it it c ct = 1

The log-likelihood for the panel of data is ob-
tained by inserting the joint probability in [8]
in the log-likelihood in [7]:

N C TilogL = log π� � c�i = 1 c = 1 t = 1� [9]

P(y ⎪x ,β ,α , on site, class = c) .it it c c �
The function in [9] is maximized with re-
spect to θ = [(β ,α ),(β ,α ), . . . ,(β ,α ),1 1 2 2 C C

.(τ , . . . ,τ )]1 C
Finally, it should be noted that the ap-

proach of adjusting for truncation and endog-
enous stratification in both the observed and
contingent observations distribution is differ-
ent from that of Egan and Herriges (2006) and
Beaumais and Appéré (2010) where the ob-
served behavior data are assumed truncated to
zero and endogenously stratified but the con-
tingent behavior data are not. Thus the on-site
sampling correction is specified only through
observed data in their case. Even though our
second observation for each person is the hy-
pothetical number of trips that person would
make under changed site conditions, we argue
that the problem of endogenous stratification
and truncation still holds. The respondent is
still someone who has a higher likelihood of
being included in the sample due to his or her
frequency of use. Also, given that the contin-
gent behavior question is commonly set up
such that respondents are asked how many
more trips (if any) they would make to the site

given an improvement in facilities (and there-
fore y2 cannot be less than y1), truncation still
exists in the second period, as we are still
dealing only with individuals who will use the
facility at least once.6

For consumer utility maximization subject
to an income constraint, and where the num-
ber of trips are a nonnegative integer, Hell-
erstein and Mendelsohn (1993) show that the
expected value of consumer surplus, E(CSit)
derived from count models, can be calculated
as , whereˆE(CS ) = E(y ⎪x )/β = λ /(β )it it i pi it pi
yit is the number of trips to the beach for in-
dividual i under conditions t, and λit is the
underlying rate at which the number of trips
occur, such that one would expect some num-
ber of trips in a particular year, in other words,
λit is the mean of the random variable Yit. The
coefficient, βpi is the individual price (i.e.,
travel cost) coefficient. The per-trip E(CSit) is
simply equal to –1/βpi. The change in the con-
sumer surplus resulting from an improvement
in the coastal amenities is then given by

*ˆ ˆΔE(CS ) = ΔE(y ⎪x )/β = (λ −λ )/β [10]i ij i pi i i pi,

where is the expected number of trips be-λ̂i
fore any improvements are made to the coastal
amenities (t = 1) and is the expected num-*λ̂i
ber of trips after improvements are made to
the coastal amenities (t = 2). This suggests
that the change in consumer surplus for indi-
vidual i can be calculated by dividing the
change in the predicted number of trips to the
beach site by the coefficient of the travel cost
variable. It is important to state that the rele-
vant comparison in welfare terms is between
the number of predicted trips at the current
level of coastal amenity provision at the beach
site and the predicted number of trips at the
improved level. Also, it should be noted that

6 Interestingly, Moeltner and Shonkwiler (2010) showed
that on-site sampling issues persist even for past season trip
reports if the respondent is intercepted on site this season.
The authors labeled this effect “avidity carryover.” They
found that for their sample of lake visitors, relatively
stronger preference or “avidity” for the interview site carries
over across seasons. We argue that a similar effect could
apply to hypothetical trip reports, if we interpret them as
“future season trips.” If that is indeed the case then this again
implies that the contingent behavior data as well as the ob-
served behavior data should be assumed truncated.
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one cannot disaggregate benefit estimates into
additional utility from those who take no extra
trips to the beach and additional utility from
those who visit most frequently. The beach
travel cost study and the on-site collected data
set employed are described in the next section,
prior to the presentation of model results and
welfare estimates.

IV. DATA AND STUDY BACKGROUND

The application of our model is to a data set
generated from a survey that examined the pos-
sible welfare impact associated with the de-
velopment of a coastal trail that connects two
beach areas along the Galway Bay coastline in
the west of Ireland. The data was generated
from an on-site survey of visitors to Silver-
strand beach, approximately 7 km outside of
Galway city, which is accessible by public road
only. The beach itself is only 300 m long and
has only limited facilities in the form of park-
ing, benches, picnic tables, and toilet facilities.
Nevertheless it is a popular destination, par-
ticularly in the summer months for outdoor en-
thusiasts, and is used heavily by the local urban
community of Galway city and surrounding
area as a recreational amenity. The beach was
of interest as it is a site where potential exists
to add recreational value through the establish-
ment of a walking trail that would link it to
another area of beach currently cut off by a
small area of farmland.

Failte Ireland (2008) reported that holiday-
makers do not visit Ireland for the typical beach
holiday, but rather seek out soft adventure ac-
tivities such as walking, kayaking, and so on
along the coast. It has also been noted that one
of the best means for improving the value of
coastal resources such as beaches is through
the provision of walking trails. These not only
provide a valuable source of recreation to the
public but also provide increased access to the
coastline. However, some of the best coastal
walking areas in Ireland can be accessed only
through private farmland, and under Irish law,
access to privately owned land for the purpose
of recreation is at the discretion of the land-
owner. A variety of issues such as potential
interference with agricultural activities, insur-
ance liability, and potential invasion of privacy
have been cited by landowners as reasons why

they may be unwilling to permit public access
to their farmland for walking-related activities
(Buckley et al. 2009).

Silverstrand beach was chosen as a site to
investigate the issue of coastal access. Next to
the beach is a strip of privately owned agri-
cultural land that has a cliff face at the water’s
edge. The strip of agricultural land prevents
the access by recreationalists to a much larger
area of beach and also prevents access along
the shore to the nearby Salthill Beach and
promenade. If recreationists could freely cross
this section of agricultural land, it would open
up a coastal walk of over 4 miles. At present,
users of Silverstrand have no right to cross the
private farmland to access the additional
beach area. With this in mind, respondents
were asked a contingent behavior question in
relation to how their usage of the beach facil-
ity would change if the length of beach at their
disposal was increased through the opening
up of a cliff walk that would give them access
to an additional 1 km of beach and also access
along the shore to Salthill Beach and the
promenade. The features of the new walking
trail were pointed out to respondents on a
map, as well as information on how the new
walking trail would also open up access to the
nearby Salthill Beach.

As part of the study, 146 personal inter-
views were carried out at the beach site. The
questionnaire was piloted over a two-week
period in June 2009. This was followed by the
main survey, which took place at Silverstrand
during the months of July and August 2009.
Due to the nonresponse to certain questions
in the main survey, 18 surveys were not
deemed usable in the final analysis, which re-
sulted in a final sample of 128 individual re-
sponses being used for model estimation. The
on-site interviews were conducted on both
week days and weekends, during all daylight
hours. The questionnaire solicited information
on trips taken to the beach, activities under-
taken, personal demographics, income, em-
ployment status, education, social relations,
and obligation-free time. Each interview took
approximately 20 minutes.

Respondents were provided with back-
ground information on the study and were
then asked to outline how they used the beach
for recreation. Next, they were presented with
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Suppose that NEXT YEAR a new WALKING
PATH was built connecting to this beach
resource.

The path would consist of:

• An approx 2 km round trip walk along the
cliffs to the end of the spit at Rusheen Bay.

• Walkers would be granted formal right of
way along the walk (currently people walk
along the cliff but are not supposed to as it is
privately owned farm land).

• A marked path with a fence to separate the
walk from the farm land and cliff edge.

• Informational plaques detailing the
surrounding countryside.

All facilities would be built with material that
blends in with the coastal amenity.

How would these new facilities affect your use
of THIS BEACH?

FIGURE 1
Scenario Examined in Contingent Behavior Study

information on how the beach (where they
were sampled) might be improved for recre-
ation. Respondents were then presented with
the contingent behavior scenario (as shown in
Figure 1) and asked if the site changes de-
scribed on the card were implemented at the
beach resource, would they change the num-
ber of trips they would take to the site over
the next 12 months. This was followed up
with an option of choosing (1) no change in
number of trips taken, (2) more trips, or (3)
fewer trips. Finally, the respondent was asked
to state the increased (or decreased) number
of trips if they had chosen option 2 (or 3).7
Thus, two observations for trips taken were
collected from each respondent: the actual
number of trips taken in the previous 12
months and the contingent number of trips
that would be taken if the walking trail was
put in place. This resulted in a panel data set
of 256 observations. Finally, attitudinal data
was also collected from the respondents.

7 As is often the case in contingent behavior studies of
this type, no respondent chose option number 3.

Each respondent’s travel cost was com-
puted following the standard approach in the
literature by considering the direct costs and
the opportunity cost of travel. For each re-
spondent i and each scenario t, the travel cost
was calculated as

Dist × CostperKM Incomeit i
TC = + Time 0.25× ,it � �( ) [ ( )]Groupsize 2000i

where is the round-trip distance fromDistit
the respondent’s home to the site, Time is the
return travel time (in hours) from home to site,

is the average petrol cost perCostperKM
mile,8 and is the number of peopleGroupsizei
that traveled to the site in the respondent’s ve-
hicle. Following Shaw and Feather (1999), the
opportunity cost of travel time is included in
the travel cost calculation as a proportion
(0.25) of the hourly wage, where the hourly
wage rate was taken as the respondents re-
ported income divided by 2,000, based on a
40 hour week for 50 weeks in a year. No al-
lowance for on-site time was made in the
travel cost calculation.9

Relaxing/sun bathing was highlighted as
the main activity of 35% of all respondents in
the survey followed by entertaining children
(21%), swimming (13%), walking (11%), and
other water sports (6%). Also, it is notable that
49% of respondents were male, 57% were in
full-time employment, and 63% had been
educated up to degree level. Mean annual vis-
its to the beach where each respondent was
sampled were 11.76 (range 1 to 60). The day
of the survey was the first ever visit to the
beach for 7% of the sample, and respondents
spend on average 2 hours 31 minutes on site.
A visit to the beach was the main purpose of
the day’s journey for 61% of the sample, and
participants in the survey used the beach re-
source for, on average, 4.1 different recrea-

8 The Automobile Association of Ireland’s calculation of
€0.224/mile, obtained from www.aaireland.ie/infodesk/
cost_of_motoring.asp, was used.

9 An in-depth discussion of the many issues that sur-
round the calculation of the travel cost variable is beyond
the scope of the article, but for a good overview of the treat-
ment of time and the specification of the travel cost variable
in recreation demand models, the interested reader is advised
to see Shaw and Feather (1999) and Hynes, Hanley, and
O’Donoghue (2009).
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TABLE 1
Summary Statistics

Variable Name Description Mean Std. Dev.

Actual trips Number of trips respondent actually took to the beach in last 12
months

11.76 14.9

Hypothetical trips Number of trips respondent would take in next 12 months if
scenario implemented

17.31 19.23

Age Age 41.06 13.68
Income Gross annual income (€) 51,551 29,334
Incidental visit to beach Dummy indicating whether trip to beach occurred by chance as

happened to be in the area anyway (1) or was a planned trip
to the beach (0)

0.39 0.49

Member of recreation or
environmental organization

Dummy variable indicating whether the respondent is an active
member of a recreational organization such as a kayak or surf
club or an environmental organization such as Birdwatch
Ireland or Greenpeace

0.47 0.5

Travel cost Return travel cost from home to beach 15.28 17.43
Travel cost substitute site Return travel cost to the alternative site most frequently visited

by respondent
13.77 15.32

Water sport participation Dummy variable indicating whether trip to beach involved a
water sport

0.15 0.36

tional activities. Mean one-way distance trav-
eled was 24 miles, and respondents to the
survey tended to be at the beach in groups of,
on average, 2.2 persons (range 1 to 13). Fur-
ther summary statistics associated with the
sample are presented in Table 1.

V. RESULTS

Given the contingent behavior scenarios
described in Figure 1 and the model specifi-
cations described in Section III, we present
here the results of two panel models. Table 2
presents the results of both a random effects
negative binomial model corrected for on-site
sampling and a random effects latent class
negative binomial panel model also corrected
for endogenous stratification and truncation.
Although not discussed here in detail, both
pooled versions of the Poisson and negative
binomial model were also initially fitted, as
were random effects Poisson and negative bi-
nomial models uncorrected for on-site sam-
pling.10 The results for these models are pre-
sented in the Appendix, and for the purpose
of comparison we also estimate and present

10 Whether a panel specification was preferred to a
pooled specification was tested, and the likelihood ratio test
statistic confirmed the need for a panel rather than a pooled
regression.

the mean consumer surplus per trip estimates
and the change in consumer per trip estimates
as a result of the new coastal walking trail for
all models in Table 3.

In all models, the average number of trips
undertaken by individual i under (the real or
contingent) scenario t is assumed to be a func-
tion of the travel cost to the site, the travel
cost to the respondent’s next preferred substi-
tute site, whether the respondent participates
in a water sport while on-site, is a member of
a recreational or environmental organization,
income, age, whether the visit to the beach is
simply due to the respondent being in the area
for other business and a “contingent behavior”
variable, which indicates whether the visits
we are explaining are actual, with current fa-
cilities, or hypothetical, with improved facili-
ties. A further description of each of the in-
dependent variables is given in Table 1.

The model in the first column of Table 2 is
the random effects panel negative binomial
accounting for on-site sampling (henceforth
referred to as the NB corrected model) while
the second and third columns present the re-
sults of the negative binomial panel model
that allows for unobserved heterogeneous
with respect to the impact of explanatory vari-
ables on the number of trips taken as well as
accounting for the issue of on-site sampling
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TABLE 2
Negative Binomial Contingent Behavior Models Accounting for Truncation and Endogenous Stratification

Latent Class Negative Binomial Panel
Count Model

Negative Binomial Panel
Count Model Latent Class 1 Latent Class 2

Age 0.156*** (0.035) 0.104*** (0.031) 0.215*** (0.052)
Income −0.003 (0.002) −0.005** (0.002) 0.003 (0.002)
Incidental visit to beach −1.202*** (0.145) −1.481*** (0.197) −0.680*** (0.221)
Member of recreation or environmental

organization
0.404*** (0.094) −0.052 (0.101) 0.180 (0.114)

Contingent behavior 0.481(0.388) 0.292* (0.172) 0.666*** (0.210)
Travel cost −0.033*** (0.009) −0.047** (0.019) −0.064*** (0.017)
Travel cost substitute site 0.032*** (0.009) 0.067*** (0.022) 0.039** (0.016)
Water sport participation 0.553*** (0.145) 0.166 (0.155) 0.437** (0.182)
Constant 0.463 (0.420) 3.529*** (0.184) 0.534* (0.280)
Scale parameter/alpha in LC 1.345 (1.584) 0.051** (0.026) 0.722*** (0.176)
Class probabilities 0.217*** (0.040) 0.783*** (0.040)
AIC 1,735 1,605
BIC 1,771 1,679
Log likelihood −858 −781

Note: Standard errors are in parentheses. The income variable has been rescaled by dividing by 1,000.
* Significance at the 10% level; ** significance at the 5% level; *** significance at the 1% level.

TABLE 3
Consumer Surplus (CS) and Change in Trips Taken Estimates from Alternative Model Specifications

Model Specification Mean CS per Trip (€)

Change in Number of
Trips Taken as Result of

New Walking Trail
Change in CS as Result of

New Walking Trail (€)

Pooled Poissona 59.35 (43.09, 75.60) 5.63 334.23
Pooled negative binomiala 125.02 (−38.15, 288.20) 6.19 774.12
Basic panel Poisson 35.88 (15.09, 56.66) 3.51 125.94
Basic panel negative binomial 34.64 (1.31, 67.97) 4.87 168.56

Panel Models Accounting for Truncation and Endogenous Stratification

Negative Binomial 30.54 (14.11, 46.96) 3.32 101.44
LC negative binomial: Class 1 21.43 (4.20, 38.65) 6.04 129.39
LC negative binomial: Class 2 15.67 (7.36, 23.98) 6.04 94.61
Weighted LC negative binomialb 16.93 (6.66, 27.21) 6.04 102.26

Note: All values are per person. Ninety five percent confidence interval in parentheses.
a The model results of the pooled Poisson and pooled negative binomial models are not presented in this paper but are available from the

authors upon request.
b This is the weighted CS per trip estimate estimated by considering the class probabilities in the NB latent class model.

(henceforth referred to as the LC corrected
NB model). The travel cost coefficients in
both models are significant at the 5% level and
have the expected negative signs. This indi-
cates that, on average, as the cost of traveling
to the beach site decreases, the number of trips
made to the site increases. The “travel cost to
the nearest substitute site” and the “incidental
visit to the beach” variables are also signifi-
cant and have the a piori expected signs.

The one major difference between both
models in terms of the estimated coefficients
is that the contingent behavior variable is in-
significant in the NB corrected model. This
finding would appear to suggest that the hy-
pothetical trail that facilitates access to a fur-
ther area of beach does not have a statistically
significant effect on the number of planned
trips to the site. Once we account for the un-
observed heterogeneity in our sample, how-
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ever, the contingent behavior variable in our
LC corrected NB model is significant (at the
90% level in Class 1 and at the 99% level in
Class 2). In fact, all variables bar being a
member of a recreation or environmental
group are now significant at the 95% level in
at least one of the two class segments.

With respect to the definition and testing of
hypothesis on the number of classes to include
in the latent class corrected NB model, the
conventional specification tests used for max-
imum likelihood estimates are not valid as
they do not satisfy the regularity conditions
for a limiting chi-square distribution under the
null (Hynes et al. 2008). Therefore, in order
to decide the number of classes, we used the
information criteria statistics first developed
by Hurvich and Tsai (1989). We report the
Akaike information criterion (AIC), the Bay-
sian information criterion (BIC), and the Han-
nan Quinn statistic for all models in Table 2
and Appendix Table A1. In terms of the latent
class corrected NB model, no one number of
classes minimizes each of the measures. The
three-class specification has the lowest score
on two of the criteria, while the two-class
specification is lowest for the BIC. As Scarpa
and Thiene (2005) point out, these statistics
provide guidance on the number of latent
classes to choose, but this decision also re-
quires the discretion of the researcher. We
hence choose to report in Table 2 only the LC
corrected NB model estimates for the two-
class model even though two of the informa-
tion criteria statistic were lower for the three-
and four-class models. We reject the
four-class model as one of its classes has a
complete set of insignificant parameter esti-
mates and also both the three- and four-class
models displayed a high number of insignifi-
cant parameter estimates in at least one of
their other classes.

As can be seen from Table 2, the two-class
model specification allocated 22% of respon-
dents to Class 1 and 78% to Class 2. Impor-
tantly, the travel cost coefficients in both
classes are negative and significant at the 5%
level, and, as mentioned above, the contingent
behavior variable is also significant in both
classes. It is also interesting to note that the
income coefficient is now significant for the
smaller group of recreationists likely to be

represented by Class 1. This coefficient was
insignificant in all earlier versions of the con-
tingent behavior model. Only by allowing for
taste heterogeneity in the sample do we pick
up on the importance of this characteristic for
a certain portion of recreationalists using the
site. It should also be noted that for this
smaller segment, participation in water sports
has no influence on the number of trips made
to the site, whereas it has for Class 2. The
travel cost variable would appear to have
more or less the same influence on both,
which would suggest that both classes exhibit
price sensitivity to the same degree.

Finally, it should be noted that that the LC
corrected NB model had a lower log-likeli-
hood value (in absolute terms) and a lower
score on all of the information criteria statis-
tics than the NB corrected model, indicating
that the latent class structure provides a better
fit for our on-site sampled data than when we
assume a homogenous mean influence of the
explanatory variables among our beach re-
creationists.

Following Beaumais and Appéré (2010)
we also carried out a Vuong test (Vuong 1989)
to examine if the on-site sampling correction
to the negative binomial specification was ap-
propriate. Previously Greene (1994) adapted
the Vuong test to examine the appropriateness
of a zero-inflated negative binomial versus a
standard negative binomial model. The Vuong
statistic has a limiting distribution that is nor-
mal with large positive values favoring the
corrected model and with large negative val-
ues favoring the standard panel version of the
negative binomial model unadjusted to ac-
count for on-site sampling. Values close to
zero in absolute terms favor neither model.
The calculated Vuong statistic of 9.54 results
in a clear rejection of the null hypothesis that
not accounting for on-site sampling has no ef-
fect on the means or the variances in the neg-
ative binomial panel specification of the con-
tingent behavior model (i.e., that the models
are indistinguishable).

Estimating the welfare effects of changes
in the quality or supply of site facilities or
environmental goods is the main objective of
most contingent behavior studies. We there-
fore consider the implications for welfare
measures of controlling for on-site sampling
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and unobserved heterogeneity. In particular
we compare the consumer surplus (CS) per
trip (real behavior), the estimates of the
change in number of trips taken, and the
change in total CS per recreationalist as a re-
sult of the hypothetical extension to the beach
being provided through the creation of an ad-
joining walking trail, across the alternative
model specifications. Table 3 also reports the
estimates for the basic (unadjusted for on-site
sampling issues) pooled and panel Poisson
and negative binomial specifications.

The panel negative binomial models ac-
counting for truncation and endogenous strat-
ification result in lower mean CS estimates
and lower predicted trips taken than the basic
pooled and panel Poisson and NB models.
The distribution of CS estimates for the LC
corrected NB model varies across classes,
with each class having a specific CS per trip
estimate. The class-weighted population esti-
mate of per trip consumer surplus for the la-
tent class corrected NB model is estimated
with 95% confidence to be between €16.93
and €27.21. With a mean CS per revealed trip
estimate of €21.67 and €15.67 for Class 1 and
2, respectively, this model provides the most
conservative mean CS estimates across all the
reported models.

While nothing in the construction of the LC
corrected model assures that the CS measures
in a two-class model will bracket the result
from a one-class model (the NB corrected
model), it is still interesting to note that the
CS estimate in the NB corrected model does
not fall between the two-class estimates of the
latent class corrected NB model. This may be
an indication that the one-class model is forc-
ing an overestimate of the consumer surplus
measure and that controlling for heterogeneity
in the population with respect to the impact of
the chosen explanatory variables provides
more reliable CS estimates.

To estimate the recreation benefits from the
access improvements and the addition of the
walking trail and additional beach area, the
steps outlined in the methodology section
were followed. To calculate the proportional
change in recreationalist welfare from imple-
mentation of the coastal walking trail, we first
take into account the stated change in trips to
the beach site if the trail were to be put in

place. Such a facility improvement would in-
crease visits by an estimated 3.32 trips per
year under the NB corrected model. This is
the lowest predicted change in trips across all
model specifications.

Even though the LC corrected NB model
provides the lowest mean CS per trip esti-
mates, it predicts the second-largest change in
the number of trips taken per individual as a
result of the beach site changes being imple-
mented (6.04 additional trips per person per
year). However, the relatively low CS per trip
estimate for the LC corrected NB model
means that the estimated total increase in con-
sumer surplus from the beach facility im-
provements per person per year (the class-
weighted estimate) is only €0.82 higher than
the estimate associated with the NB corrected
model (€102.26 and €101.44, respectively).
The panel negative binomial model that does
not account for truncation and endogenous
stratification produces estimates for the
change in CS per person per year that are ap-
proximately 65% larger than those of the
models that do account for on-site sampling,
while the pooled unadjusted models (which is
still an approach used in the literature; see,
e.g., Hesseln, Loomis, and González-Cabánc
2004) provide estimates that are over 300%
higher.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented an extension to
Shaw’s (1988) and Englin and Shonkwiler’s
(1995) count data models corrected for on-site
sampling to a panel data setting. We con-
trasted a panel negative binomial model that
accounted for the fact that the sample was col-
lected on site with a latent class random ef-
fects panel data negative binomial model cor-
rected for on-site sampling but at the same
time allowing for the mixing of taste intensi-
ties over a finite group of taste segments in
the population. The chosen models were ap-
plied to revealed and contingent travel data
obtained from a survey of visitors to a beach
on the outskirts of Galway city in Ireland.

While Egan and Herriges (2006), Beau-
mais and Appéré (2010), and Moeltner and
Shonkwiler (2010) have previously developed
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count data panel models corrected for on-site
sampling, their approaches may still be inade-
quate and potentially misleading if the popu-
lation of interest is heterogeneous with respect
to the impact of the chosen explanatory vari-
ables. The error term added to the parameter-
ized mean function of the Poisson models
used by the aforementioned authors can be in-
terpreted as capturing unobserved heteroge-
neity. However, what was still missing in the
literature up until this paper was an on-site
corrected count data model that captures un-
observed heterogeneity via slope coefficients
for explanatory variables. Our proposed meth-
odology accounts for heterogeneity in both
the underlying mean number of trips taken
and the regression coefficients. That is, our
model assumes that the observations are
drawn from a finite number of segments,
where the distributions differ in the intercept
and the coefficients of the explanatory vari-
ables. Within each class the population inter-
est is homogenous with respect to the impact
of explanatory variables, but this assumption
is relaxed across classes.

We contend that the use of latent class
modeling approach is particularly relevant for
on-site sampled recreationalists. Users of a
recreational site such as a beach or a forest
park tend to be diverse and have different rea-
sons for wanting to visit such sites. In the dis-
crete choice recreational demand literature,
this has been a well recognized fact since
Train (1998), and now the publication of al-
most all work involving the estimation of des-
tination choice random utility models in-
volves modeling the site choice decision for
recreationists allowing for the mixing of taste
intensities either over a finite group of taste
segments (the latent class approach) or over
continuous value distributions (random pa-
rameter logit approach).11 Barring some no-

11 Hynes, Hanley, and O’Donoghue (2009) highlight the
fact that there are different types of boaters within a popu-
lation of kayakers, using a random utility site choice latent
class modeling framework, while Scarpa and Thiene (2005)
do the same for rock-climbers. An early paper by Morey
(1981) developed a model of skier behavior implicitly taking
into account whether the skier was a novice, intermediate,
or advanced in skill. The results of that study indicated that
the number of days spent at a particular skiing site depended
significantly on the individual’s skiing ability.

table exceptions such as those of Scarpa, Thi-
ene, and Tempesta (2007) and Baerenklau
(2010), this recognized heterogeneity across
recreational groups using a site such as a
beach (and indeed even within particular rec-
reational groups) has not been given the same
treatment in count data travel cost models of
recreation demand (and never in the case of
travel cost models adjusted for on-site sam-
ples) as it has in the discrete choice literature.
This paper fills that gap in the literature.

The LC corrected NB model facilitated a
much deeper analysis of the factors driving
the decision to make a particular number of
trips to the beach site. It also highlighted the
fact that there are distinct segments of the
population who make that decision based on
different influences. For instance, in one seg-
ment, having a higher income has a significant
(and negative) influence on the number of
trips taken while participating in a water sport
at the beach site did not. In the second seg-
ment, income had no significant influence
while participating in a water sport at the
beach site was highly significant.

The latent class approach also generates
additional information that is potentially very
useful to recreational site managers, simply by
identifying groups of users with particular de-
mands. Planners and policy makers may be
concerned with how changes to coastal sites
will affect visitor numbers or the utility of the
individuals that visit the sites. Being able to
identify different segments of users within a
count data modeling framework will allow
such managers to better allocate resources be-
tween policy issues such as beach congestion,
beach access, coastal access such as roads and
trails, and beach developments and facilities.
In our empirical investigation, for example,
the results of the latent class corrected NB
model suggest that policies impacting on wa-
ter sport participation would have an impact
on a larger group of beachgoers.

Given the relatively small sample size it
would be wise to take a cautious view as to
how representative the estimated welfare re-
sults are of the population of beach users in
the west of Ireland. Nevertheless the esti-
mated models still demonstrate how control-
ling for on-site sampling and unobserved het-
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erogeneity can have a significant impact on
predicted trips taken and on welfare estima-
tion. Also, it should be noted that Whitehead
et al. (2008a) have shown that when the prod-
uct of trips and consumer surplus per trip is
taken as an estimate of consumer surplus per
year in contingent behavior models, hypo-
thetical bias may lead to upwardly biased sea-
sonal consumer surplus estimates.12 While
this paper’s contribution does not require the
avoidance of this problem, we mention it in
order to caution the reader who might wish to
use the results for policy analysis.

12 A possible solution to this problem is for the re-
searcher to first ask respondents to report contingent behav-
ior under the circumstances of no change in quality or site
status prior to asking them to report contingent behavior
under the circumstances of the change in the status quo.

It is important to state that while the focus
of the paper was on a model of contingent
behavior, the developed modeling framework
is just as applicable to cases where data has
been collected on-site in relation to trips taken
by the same individuals over repeat time pe-
riods or on an individual’s trip activity to al-
ternative sites over a fixed period. Finally, an
area for future research is to compare the wel-
fare impacts derived using the latent class
specification developed here to a count data
model where the unobserved heterogeneity of
the population with respect to the explanatory
variables is specified as continuous rather than
over finite segments (i.e., specifying the
slopes as random coefficients). This would al-
low for a broader discussion of how unob-
served heterogeneity could be best captured
in on-site panel count data models.

APPENDIX

TABLE A1
Pooled and Panel Poisson and Negative Binomial Contingent Behavior Models Unadjusted for Truncation

and Endogenous Stratification

Poisson Pooled
Count Data Model

Negative Binomial
Pooled Count Data

Model
Poisson Panel Count

Data Model

Negative Binomial
Panel Count Data

Model

Age 0.001 (0.001) 0.001 (0.007) 0.105*** (0.023) 0.165*** (0.032)
Income 0.002*** (0.001) 0.002 (0.002) −0.001 (0.001) 0.001 (0.002)
Incidental visit to

beach
−0.724*** (0.075) −0.909*** (0 .189) −0.664*** (0.189) −0.780*** (0.243)

Member of recreation
or environmental
organization

0.471*** (0 .035) 0.389*** (0.116) 0.51*** (0.096) 0.333*** (0.092)

Contingent behavior 0.387*** (0.033) 0.429*** (0.099) 0.387*** (0.028) 0.418*** (0.049)
Travel cost −0.017*** (0 .002) −0.008 (0.005) −0.028*** (0.008) −0.029** (0.014)
Travel cost substitute

site
0.001 (0 .001) 0.001 (0 .003) 0.017* (0.01) 0.01 (0.015)

Water sport
participation

0.386*** (0 .038) 0.434** (0 .185) 0.613*** (0.069) 0.736*** (0.125)

Constant 2.373*** (0.044) 2.34*** (0.155) 1.607*** (0.127) 1.743*** (0.169)
Alpha 0.677*** (0.088) 0.022** (0.01)
Sigma 0.628*** (0.028) 0.805*** (0.053)
AIC 3,598 1,795 1,605 1,581
BIC 3,630 1,831 1,641 1,620
Hannan Quinn 3,611 1,809 1,620 1,597
Log likelihood −1,790 −887 −793 −779

Note: Standard errors are in parentheses. The income variable has been rescaled by dividing by 1,000. AIC, Akaike information criterion;
BIC, Bayesian information criterion.

* Significance at the 10% level; ** significance at the 5% level; *** significance at the 1% level.
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reational Shellfish Harvesting and Health Risks: A
Pseudo-panel Approach Combining Revealed and
Stated Preference Data with Correction for On-
Site Sampling.” Ecological Economics 69 (12):
2315–22.

Buckley, Cathal, Stephen Hynes, Tom van Rensburg,
and Edel Doherty. 2009. “Walking in the Irish
Countryside: Landowner Preferences and Atti-
tudes to Improved Public Access Provision.” Jour-
nal of Environmental Planning and Management
52 (8): 1053–70.

Christie, Michael, Nick Hanley, and Stephen Hynes.
2007. “Valuing Enhancements to Forest Recrea-
tion Using Choice Experiments and Contingent
Behavior Methods.” Journal of Forest Economics
13 (2): 75–102.

Egan, Kevin, and Joseph Herriges. 2006. “Multivar-
iate Count Data Regression Models with Individ-
ual Panel Data from an on-site Sample.” Journal
of Environmental Economics and Management 52
(2): 567–81.

Englin, Jeffrey, and Trudy A. Cameron. 1996. “Aug-
menting Travel Cost Models with Contingent Be-
havior Data.” Environmental and Resource Eco-
nomics 7 (2): 133–47.

Englin, Jeffrey E., and J. S. Shonkwiler. 1995. “Esti-
mating Social Welfare Using Count Data Models:
An Application to Long-Run Recreation Demand
under Conditions of Endogenous Stratification and
Truncation.” Review of Economics and Statistics
77 (1): 104–12.

Failte Ireland. 2008. Hiking/Walking 2007. Available
at www.failteireland.ie/getdoc/9c7a56d2-299d-
460d-943f-b34639f0f07f/Hiking-2007 (accessed
January 6, 2010).

Greene, William H. 1994. “Accounting for Excess
Zeros and Sample Selection in Poisson and Neg-
ative Binomial Regression Models.” Working pa-
per NYU, EC-94-10, Stern School of Business.

———. 2007. NLOGIT 4 Econometric Modeling
Guide, Vol. 2. New York: Econometric Software.

———. 2008. Econometric Analysis, 6th ed. Upper
Saddle River, NJ: Prentice Hall.

Grijalva, Therese C., Robert P. Berrens, Alok K. Bo-
hara, and W. Douglass Shaw. 2002. “Testing the
Validity of Contingent Behavior Trip Responses.”
American Journal of Agricultural Economics 84
(2): 401–14.

Grogger, Jeffrey T., and Richard T. Carson. 1991.
“Models for Truncated Counts.” Journal of Ap-
plied Econometrics 6 (3): 225–38.

Hanley, Nick, David Bell, and Begona Alvarez-Far-
izo. 2003. “Valuing the Benefits of Coastal Water
Quality Improvements Using Contingent and Real
Behavior.” Environmental and Resource Econom-
ics 24 (3): 273–85.

Hellerstein, Daniel, and Robert Mendelsohn. 1993.
“A Theoretical Foundation for Data Models.”
American Journal of Agricultural Economics 75
(3): 604–11.

Hesseln, Hayley, John B. Loomis, and Armando Gon-
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